
SSL Certificates
This section describes how to use SSL Certificates with SOA Gateway running on Linux.

Setup

Introduction

Step 1: Set up your own CA

Step 2: SOA Gateway Server key and certificate

Server Configuration

Setup
To enable the use of SSL Certificates for your SOA Gateway, openssl must be installed.

SSL support is not automatically built into SOA Gateway due to export restrictions in certain countries.
Please contact your SOA Gateway representative to get access to a SSL enabled version.

Introduction
The Apache module mod_ssl provides strong cryptography for the SOA Gateway via Secure Sockets
Layer (SSL v2/v3) and the Transport Security Layer (TLS v1) protocols with the help of the SSL/TLS
implementation library openssl. This section will help you to secure your SOA Gateway using mod_ssl. In
order to run a secure server, you need a private key and a certificate for the server. In a commercial
environment, it would be advisable to purchase a signed certificate from a well-know Certificate
Authority (CA), such as Thawte or Verisign. For the purpose of this section, we will become the CA and
generate our certificates using the openssl toolkit. Some terms used in this section are outside of the scope
of the documentation, and will not be explained in detail. For more information on SSL, and
corresponding keys or certificates, see here

Step 1: Set up your own CA
Firstly we will setup our own CA, and generate a certificate and a key that can be used to sign other
certificates.

Generate the key, entering a password when prompted:

openssl genrsa -des3 -out myCa.key 2048

Generate the X.509 certificate:

openssl req -new -x509 -key myCa.key -out myCa.crt

Enter the password you added when creating the key (when prompted).

1

SSL CertificatesSSL Certificates

http://www.openssl.org/
http://www.modssl.org/docs/2.8/ssl_intro.html

Enter the information would you like to appear on your CA certificate. You should now have your CA
key, myCa.key, and a CA certificate, myCa.crt in the current directory.

Optionally you may view the certificate by typing the command

openssl x509 -in myCa.crt -text -noout

Step 2: SOA Gateway Server key and certificate
This step will create a key and certificate for the SOA Gateway server.

Rather than creating a certificate directly, we will create a certificate request, then use the CA key we
made in Step 1 to sign the server certificate.

Generate the key, entering a password when prompted:

openssl genrsa -des3 -out asg-server.key 1024

Generate the server certificate request

openssl req -new -key asg-server.key -out asg-server.csr

Sign the certificate request with out CA information and generate our server certificate. Note: For this
certificate, the “Common Name” should be the hostname of the server this certificate is going to be used
on.

openssl x509 -req -in asg-server.csr -out asg-server.crt -sha1 -CA
myCa.crt -CAkey myCa.key -CAcreateserial -days 3650

Optionally, you can view the server certificate you’ve created with the command:

openssl x509 -in asg-server.crt -text -noout

You should see that the Certificate issuer is your CA Company.

Server Configuration
Before importing the key and certificate into the SOA Gateway server, we need to enable SSL support.
Choose next section depending on your system.

SSL Configuration

The SSL configuration file is should be located in your SOA Gateway installation directory. Your SOA
Gateway representative will provide you with a version of this file to suit your system. The following is an
example:

<IfDefine SSL>
<IfDefine !NOSSL>
<IfModule mod_ssl.c>

AddType application/x-x509-ca-cert .crt
AddType application/x-pkcs7-crl .crl

SSLPassPhraseDialog builtin

2

Step 2: SOA Gateway Server key and certificateSSL Certificates

SSLSessionCache shmcb:/usr/local/soaGateway/apache2/logs/ssl_scache
SSLSessionCacheTimeout 600

SSLMutex sem
#SSLMutex file:/usr/local/soaGateway/apache2/logs/ssl_mutex

SSLRandomSeed startup builtin
SSLRandomSeed connect builtin

<VirtualHost _default_:443>

 DocumentRoot "/srv/www/htdocs"
 ErrorLog /usr/local/soaGateway/apache2/logs/error_log
 TransferLog /usr/local/soaGateway/apache2/logs/access_log
 ServerName <<hostname>>

 SSLEngine on

 SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

 SSLCertificateFile /usr/local/soaGateway/apache2/certs/asg-server.crt
 SSLCertificateKeyFile /usr/local/soaGateway/apache2/keys/asg-server.key

 SSLCACertificateFile /usr/local/soaGateway/apache2/certs/myCa.crt

 <Files ~ "\.(cgi|shtml|phtml|php3?)$">
 SSLOptions +StdEnvVars
 </Files>
 <Directory "/srv/www/cgi-bin">
 SSLOptions +StdEnvVars
 </Directory>

 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown downgrade-1.0 force-response-1.0

 CustomLog /usr/local/soaGateway/apache2/logs/ssl_request_log ssl_combined

</VirtualHost>

</IfModule>
</IfDefine>
</IfDefine>

For the ServerName <<hostname>> directive ensure <<hostname>> is the hostname of your machine.
This should match the “Common Name” of the asg-server.crt created earlier.

Take the “asg-server.crt” and copy it into /usr/local/soaGateway/apache2/certs/ directory Take the
“asg-server.key” and copy it into the /usr/local/soaGateway/apache2/keys directory.

Stop Apache (apache2ctl stop). Start Apache with SSL support (apache2ctl sslstart). Enter the pass
phrase for the server key.

Open a browser and enter “https://<hostname>:<port>/configurationService?WSDL” where hostname and
port are location where your SOA Gateway is running.

You should be asked do you wish to accept the certificate. Click “Accept”. The WSDL will be
downloaded to the browser over a secure connection.

To disable SSL support on this SOA Gateway, stop the server (apache2ctl stop) and start the server
normally (apache2ctl start)

Troubleshooting

Cannot connect to https:// page

3

SSL CertificatesTroubleshooting

Ensure the “Include ssl.conf” directive has been added to httpd.conf

Ensure that you have started apache with the “sslstart” parameter

Check Apache logs for error (see /usr/local/soaGateway/apache2/logs/*)

Ensure that you have connectivity to that particular hostname.

Function not implemented: Cannot create SSLMutex

Change the SSLMutex directive to “file:/usr/local/soaGateway/apache2/logs/ssl_mutex”

Example

The following is a PHP program to connect to an SSL enabled web service provided by SOA Gateway.
Note: You must have openssl support in your PHP installation. To check if you do, run the following PHP
program.

<?php phpinfo(); ?>

You should check the “configure command” section. If there is no –with-openssl option, then you need to
download PHP and build the requirements into it. See instructions here

This example uses an SSL enabled endpoint (https://) the user name and password set up earlier in the
documentation.

If this username and password are not required, remove the array type from the soapClient constructor.
E.g. $soapClient = new SoapClient(https://localhost:8080/adabas_QE_Employees?WSDL);

<?php

ini_set("soap.wsdl_cache_enabled", 0);

$soapClient = new SoapClient(
 "https://localhost:8080/adabas_QE_Employees?WSDL",
 array(’login’=>"asg", ’password’=>"boston1"));

$adabasEmployeeGetKey = array(’personnel_id’=>50005000);

try{
 $results = $soapClient->get($adabasEmployeeGetKey);
}
catch(Exception $e){

 print "An exception occurred!\n";
 print "Code : ";
 print_r($e->faultcode);

 print "\nString : ";
 print_r($e->faultstring);

 print "\n ";

 exit;
}

4

ExampleSSL Certificates

http://www.php.net/openssl

print_r($results);

?>

Client verification using SSL

This section outlines how to create and use a SSL client certificate. This certificate must be digitally
signed by the CA that the server trusts, and the user must import the certificate into their web service
client program. We will use the OpenSSL toolkit to create this client certificate.

Step 1: Generate client key and certificate

Generate the client’s key:

openssl genrsa -des3 -out asg-client.key 1024

Generate the client’s certificate request:

openssl req -new -key asg-client.key -out asg-client.csr

Sign (using “our” CA) and generate the client’s certificate. Note: For this certificate, the “Common
Name” should be the hostname of the server this certificate is going to be used on.

openssl x509 -req -in asg-client.csr -out asg-client.crt -sha1 -CA
myCa.crt -CAkey myCa.key -CAcreateserial -days 3650

Step 2: Generate the PKCS12 cert

The industry standard in client certificates is the Public Key Cryptography Standard 12 (PKCS12)
encoding. These are binary files which again can be generated using the OpenSSL toolkit.

Generate the PKCS12 encoded certificate. The “export password” that is prompted for here is the
password that the user needs to know when they import this certificate into the program.

openssl pkcs12 -export -in asg-client.crt -inkey asg-client.key -name
"SOA Gateway Client" -out asg-client.p12

You can optionally view the created certificate with the command:

openssl pkcs12 -in asg-client.p12 -clcerts -nokeys -info

Step 3: Apache Configuration

Apache must be configured to only allow clients who have the correct certificate. For the purposes of this
example, we will only all the resource “secure_adabas_employees” to be accessed by a client with the
correct certificate.

Perform the following steps:

Edit the SOA Gateway Apache configuration file

5

SSL CertificatesClient verification using SSL

Enter the following directives.

<IfModule mod_xmiddle.c>
 <Location /secure_adabas_employees>
 SSLVerifyClient require
 SSLVerifyDepth 1
 </Location>
</IfModule>

Restart the server

To test this, attempt to access this resource’s WSDL. Open a browser and enter the following:
https://<host>:<port>/secure_adabas_employees?WSDL” where <host> and <port> (if required) are the
hostname and port your SOA Gateway is running on. You should be rejected by the server, and see a
validation error message in Apache’s error_log.

Step 4: Import Client Certificate

Firstly we will import the certificate into a browser and access the WSDL.

Firefox

Tools -> Options -> Advanced -> Security -> View Certificates -> Import

Choose you PKCS12 client certificate and enter the password.

Internet Explorer

Tools -> Internet Options -> Privacy -> Certificates -> Import

Choose the PKCS12 client certificate and enter the password

Now when you attempt to get the WSDL for secure_adabas_employees you should be able to accept the
certificate signed by “our” CA company, and then view the WSDL.

If there are any errors in doing this, check Apache’s error_log for messages. Also ensure that the
certificate import has worked, and you are accessing the correct URL. Finally ensure that the <Location>
directive in httpd.conf is correct. Remember this is case sensitive!

PHP Example

The following PHP example accesses the “secure_adabas_employees” resource, which has been secured
above.

PHP will not accept a PKCS certificate. Instead, it requires a file containing both the x509 client key and
cert. To create this file, copy asg-client.crt to a new file and append the contents of asg-client.key to
asg-client.crt. These files will have been created in 1.5.8. E.g.

cat asg-client.crt > asg-newCert.crt

cat asg-client.key >> asg-newCert.crt

Or, on Windows, use Notepad.exe to create asg-newCert.crt..

6

Client verification using SSLSSL Certificates

Important:
There is a bug in Apache version 2.0.x which prevents this PHP example from working properly. This bug
has been fixed in Apache version 2.2

<?

ini_set("soap.wsdl_cache_enabled", "0"); // disabling WSDL cache

$soapClient = new SoapClient(
 "https://lxbre/secure_adabas_employees?WSDL",
 array(’local_cert’=> "asg-newCert.crt"));

$adabasEmployeeGetKey = array(’personnel_id’=>50005000);

try{
 $results = $soapClient->get($adabasEmployeeGetKey);
}
catch(Exception $e){

 print "An exception occurred!\n";
 print "Code : ";
 print_r($e->faultcode);

 print "\nString : ";
 print_r($e->faultstring);

 print "\n ";

 exit;
}

print_r($results);

?>

7

SSL CertificatesClient verification using SSL

	SSL Certificates
	Setup
	Introduction
	Step 1: Set up your own CA
	Step 2: SOA Gateway Server key and certificate
	Server Configuration
	SSL Configuration
	Troubleshooting
	Example
	Client verification using SSL
	Step 1: Generate client key and certificate
	Step 2: Generate the PKCS12 cert
	Step 3: Apache Configuration
	Step 4: Import Client Certificate
	PHP Example

