
Using Java (Axis2) wrapper classes
Tutorial: Generate a Java wrapper for the "Employees" file

Java wrapper/stub classes are generated using the Apache Axis2 feature WSDL2Java.

If you do not have it already, download and install the latest Axis2 kit.

These are the steps required to generate the Java wrapper classes for the "adabas_EmployeesMini"
DataView supplied with SOA Gateway:

1. Create a new Java-project (refer to Getting started with Eclipse), name it "JavaEmployees"

2. Right-click the "JavaEmployees" project folder, select "Build Path", then "Add External Archives..:"

Add all .jar files from the axis2 "lib" directory to the project’s Build-Path.

1

Using Java (Axis2) wrapper classesUsing Java (Axis2) wrapper classes

http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/docs/userguide-creatingclients.html

3. Open a command prompt (aka "DOS box"), change to the "JavaEmployees\src" directory and run the
following command

wsdl2java -uri
http://<yourserver>:<yourport>/adabas_EmployeesMini?WSDL -o ..\ -p SoaG

The following items are generated from a SOA Gateway WSDL:

A "Stub" class implementing all types and operations (ports / bindings)

A CallbackHandler - a stub class (not used in this tutorial) providing hooks for client-side
extensions to the generated result- and error handlers.

A Fault class

2

Using Java (Axis2) wrapper classesUsing Java (Axis2) wrapper classes

4. Add a new Java class named "Tut_02_List" to the project (File -> New -> Class), opt to create a
"main" method, click "Finish".

5. Remove the generated code from the newly added class entirely, use (paste) the code from
Tut_02_List.java to create your first test program accessing ADABAS data via SOA Gateway.

6. Run the program as a "Java Application"

3

Using Java (Axis2) wrapper classesUsing Java (Axis2) wrapper classes

7. The output appears in the "Console" window:

8. This sample selects all "Employees" records with a personnel-id of 50005nnn, you may want to
experiment varying the key data, this is easily done by modifying the properties passed to the generated
classes. E.g. try the following to list all records for "Employees" whose names start "SMI", living in cities
with names starting "D".

keys.setPersonnel_id("");

keys.setName("SMI*");

keys.setCity("D*");

The following Java/Axis2 tutorial programs are available:

4

Using Java (Axis2) wrapper classesUsing Java (Axis2) wrapper classes

Tutorial What it does

Tut_01a_Get.java GET a single record by Personnel Id

Tut_01b_GetByISN.java GET a single record by ISN

Tut_02_List.java LIST some records

Tut_03a_SelectSimple.java SELECT by a range of Personnel IDs

Tut_03b_SelectSorted.java SELECT by a range of Personnel IDs and sort by Name

Tut_03c_SelectConversational.javaSELECT by multiple ranges of Personnel IDs, returned in
"chunks" of 20 records each

Tut_04a_AddUpdateDelete.javaADD + UPDATE + DELETE in "autocommit" mode

Tut_04b_AddTransactional.java ADD in a transactional context

5

Using Java (Axis2) wrapper classesUsing Java (Axis2) wrapper classes

	Using Java (Axis2) wrapper classes
	
	
	Tutorial: Generate a Java wrapper for the "Employees" file

