
Adabas SOA Gateway

Reference

Version 2012-12-17

December 2012

This document applies to Adabas SOA Gateway Version 2012-12-17.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2006-2012 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ASG-AASGREFERENCE-TBD-20121217

Table of Contents

Reference .. v
1 SOA Gateway Resource Access ... 1

Overview .. 2
2 SOAP ... 15

SOAP Headers .. 16
Soap Operations for Server Configuration .. 19

3 REST .. 23
Introduction .. 24

4 Frequently Asked Questions ... 41
How do I modify the machine identifier in the JESMSGLG? 42

5 Performance Hints ... 43
6 Internationalization ... 45

Which codepage do I use? .. 46
SOAP versus REST differences .. 46
Troubleshooting ... 47

7 Creating a Stylesheet for your SOA Gateway Data .. 49
Create HTML page from City XML ... 50

iii

iv

Reference

The following reference materials are available for SOA Gateway:

■ Glossary
■ SOA Gateway Resource Access
■ SOAP
■ REST

v

vi

1 SOA Gateway Resource Access

■ Overview ... 2

1

Overview

This section describes the operations exposed by SOA Gateway to access data sources. These op-
erations are described in aWSDLwhich is defined for eachweb service.A client programconnecting
to a web service can read the WSDL to determine what operations are available on the server.
These operations can be invoked using SOAP or RESTful query.

SOAGateway also supportsMTOMfor binarydata, rawXML, andHTML.WSDLs can be registered
in a UDDI server for service look-up.

Supported protocol Versions

WSDL 1.1

SOAP 1.1

MTOM 1.0

Reference2

SOA Gateway Resource Access

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/Submission/soap11mtom10/

HTTP 1.1

ODBC Version 3

SOAGateway can also connect to theMessaging systems such as IBMMQand SoftwareAGEntireX
via their C-interfaces.

Web Service Security can be handled by HTTP Basic Profile authorization (via Apache), or con-
nectivity with an external security manager, such as RACF.

Further Reading

Prerequisites

Retrieve WSDL

Web Service Operations

Providing Key Information

Prerequisites

At this point your SOA Gateway Server should be installed, configured and started.

If you have not yet configured any web services, please refer to the SOA Gateway Control Center
section and add at least one web service

Retrieving the WSDL for your resource.

All web services defined will have a WSDL associated with them. This is the starting point for
using the operations provided by SOA Gateway. The WSDL describes the operations that may be
carried out, and how they are used. This includes a description of valid parameters, data and re-
sponses for each of the operations.

In order to get the WSDL for a particular resource you simply issue a standard http request, spe-
cifying:

■ the server name or IP-address of the server where SOA Gateway is installed [and running]
■ the TCP Port number that SOA Gateway is listening on (as provided in the installation)
■ the name of the service. (this is the value of the "Name" field in the web service properties)

The following example shows the URL required to retrieve theWSDL for an Adabas "Employees"
file.

3Reference

SOA Gateway Resource Access

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://support.microsoft.com/kb/110093

PortusGatewayServer Name

56000Port Number

adabas_EmployeesName

http://PortusGateway:56000/adabas_Employees?WSDLURL for WSDL

SOA Gateway Web Services Operations for Data Resources

The operations provided by SOAGateway for accessing data resources [files, databases, programs,
etc.] are now explained.

Parameters are required unless otherwise stated.

list (SOAP)Operation

LIST (REST)

The list operation returns a list of records or rows from your data source.Description

The data returned can be limited or restricted by providing key information.

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Key data

Key data must be entered for at least one of the fields defined as a key.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

Reference4

SOA Gateway Resource Access

select (SOAP)Operation

SELECT (REST)

The select operation returns a list of records or rows from your data source. The maximum
number of rows/records returned can be set via the SOA Gateway Control Center.

Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

The data returned can be limited or restricted by providing key information. The select operation
extends the capability of the list operation by enabling searches on a larger set of criteria.

The key information for a select is wrapped in a condition block and can be repeated several
times within that block. Each key entry represents an 'AND' condition. Condition blocks can
also be repeated several times. Each condition block represents an 'OR' condition. The condition
block accepts the following specifiers:

Conditions ■ Less than a specific value (LT).
■ Less than or equal to a specific value (LE).
■ Equal to a specific value (EQ).
■ Greater than a specific value (GT).
■ Greater than or equal to a specific value (GE).
■ Not equal to a specific value (NE).
■ Starting with a specific value (START). Character based fields only.
■ Ending with a specific value (ENDS). Character based fields only.
■ Containing a specific value (CONTAINS). Character based fields only.

SOAPExample

<soapenv:Body>
<nos:adabasEmployeeSelectElement>

<!--1 or more repetitions:-->
<condition>

<!--Zero or more repetitions:-->
<personnel_id Condition="GT">50012100</personnel_id>
<personnel_id Condition="LE">50012700</personnel_id>

</condition>
<condition>

<!--Zero or more repetitions:-->
<personnel_id Condition="EQ">50012900</personnel_id>

</condition>
</nos:adabasEmployeeSelectElement>

</soapenv:Body>

REST

http://localhost:56005/adabas_Employees_9?
SELECT
&condition[1].personnel_id>50012100

5Reference

SOA Gateway Resource Access

&condition[1].personnel_id<=50012700
&condition[2].personnel_id=50012900

The example above specifies 2 condition blocks. This will return data where the (personnel_id
> 50012100 and personnel_id <= 50012700) or personnel_id = 50012900

Parameters ■ Key data

Key data must be entered for at least one of the fields defined as a key.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

selectNextOperation

The selectNext operation returns a list of records or rows from your data source. A selectNext
operation may only be called following a select and subsequently other selectNext calls. For

Description

this functionality the initial select operation has to initiate a new Conversation. See
Conversational Processing. The resultant conversation id must be passed in any associated
selectNext calls. selectNext callsmay be issued until end of file is reached ormay be terminated
by a selectEnd call. The maximum number of rows/records will be that set for set via the SOA
Gateway Control Center.

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

There is no key information for a selectNext operation as this will have been passed in by the
initiating select operation.

Parameters ■ Key data

None
■ Options

None

Reference6

SOA Gateway Resource Access

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

Not available

selectEndOperation

The selectEnd operation terminates a sequence of select and/or selectNext calls with a
conversation. A selectEnd operation may only be called following select or selectNext

Description

operations. For this functionality the select operation has to initiate a new Conversation. The
resultant conversation id must be passed in the selectEnd call.

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

There is no key information for a selectEnd operation as this will have been passed by the
initiating select operation.

Parameters ■ Key data

None
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

Not available

selectCountOperation

The selectCount operation returns a count of the records or rows that match the criteria set in
the condition block(s).

Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

The selectCount operation is identical to that of the select operation in terms of its search
capabilities.

7Reference

SOA Gateway Resource Access

The key information for a selectCount is wrapped in a condition block and can be repeated
several times within that block. Each key entry represents an 'AND' condition. Condition
blocks can also be repeated several times. Each condition block represents an 'OR' condition.
The condition block accepts the following specifiers:

Conditions ■ Less than a specific value (LT).
■ Less than or equal to a specific value (LE).
■ Equal to a specific value (EQ).
■ Greater than a specific value (GT).
■ Greater than or equal to a specific value (GE).
■ Not equal to a specific value (NE).
■ Starting with a specific value (START). Character based fields only.
■ Ending with a specific value (ENDS). Character based fields only.
■ Containing a specific value (CONTAINS). Character based fields only.

Parameters ■ Key data

Key data must be entered for at least one of the fields defined as a key.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

get (SOAP)Operation

GET (REST)

The get operation returns a single record or row from your data source.Description

The data returned is specified by providing unique key information identifying a single record
/ row.

Reference8

SOA Gateway Resource Access

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Key Data

Key data must be entered for at least one of the fields defined as a primary key field, so that
a single record can be identified.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

add (SOAP)Operation

ADD (REST)

The add operation adds a single record or row of data to your data source.Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Add Data

Provide values for each of the fields defined. These are the fields / columns of the data on
your data source.

You must add data for at least one of the fields specified as being primary key fields.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

9Reference

SOA Gateway Resource Access

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

update (SOAP)Operation

UPDATE (REST)

The update operation updates a single record or row of data.Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Update Data

Provide values (NULL or otherwise) for each of the fields defined. These are the fields /
columns of the data on your data source.

Key data must be entered for at least one of the fields defined as a primary key field.

Refer to the section Specifying Key Data for more information.

Fields that have been left empty or NULL, e.g. <data></data>will be set to this value
accordingly.

■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

Reference10

SOA Gateway Resource Access

delete (SOAP)Operation

DELETE (REST)

The delete operation deletes a single record or row of data from the data source.Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Key Data

Key data must be entered for at least one of the fields defined as a primary key field, so that
a single record can be identified.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

invoke (SOAP)Operation

INVOKE (REST)

The invoke operation makes a call to a function or program.Description

This operation will only be available when the web service is a "program" type, for example,
NATURAL, COBOL or when the web service describes a database stored procedure.

Parameters ■ Parameters

Each of the fields defined can be input, output, or input+output.

Provide values for each of the fields defined as input or input+output. These match the
function/program parameters that are required on the call.

SOAPResult

The result will be either :

11Reference

SOA Gateway Resource Access

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

Specifying Key Data

Keys or Key Fields in SOA Gateway terms are simply fields or columns on your data source (file,
table, etc) that may be used to narrow a search for a record or row of data.

Note: key fieldsmay or may not be indexed at your data source. Indexing provides better re-
sponse times from your data source. If you are unsure what, if any, fields are key fields (in
Adabas terms: Descriptors) or allowed to be used for searching, contact your data source
administrator (DBA, etc.).

Key fields are specified to SOA Gateway by setting the appropriate value for the attribute "key
type" in the Resource Description.

Key Types

There are two types of key fields for data sources:

Primary Key Fields
Primary Key Fields are fields in a data source that must always contain unique values.

They are required on all data source operations except the list operation, where they are op-
tional. Secondary keys may be used instead or in addition on a list request.

Their values will not be altered in the update operation.

Primary Keys cannot contain wild card symbols, except on the list operation.

Secondary Key Fields
Secondary Key Fields are fields that may be used in narrowing a search.

They are not required in any operation, and their values can be updated.

They may contain wild card symbols.

Reference12

SOA Gateway Resource Access

Using Wild card Symbols and other Generic Search criteria

Wild cards are used where you do not wish to specify an exact value in a key field, but use a
generic specification that will match for a range of different values.

These search modifiers may only be used on the list operation.

SOA Gateway currently supports the following generic search criteria :

Wild card for one or more characters
The character "*" may be used as a wild card for all characters.

It may only be used on fields defined as "string" fields.

Where it appears, it will match any character or group of characters.

Note: for Adabas resources, this wildcard may only appear at the end of the string data
supplied.

Example

"Ga*" would match "Gat", "Gate", "Gateway", etc.

13Reference

SOA Gateway Resource Access

14

2 SOAP

■ SOAP Headers ... 16
■ Soap Operations for Server Configuration .. 19

15

SOAP Headers

In SOAGateway, the SOAPHeaders are used for versioning, the support of conversational SOAP
processing, support of transactions, and specific settings on the datasource you are accessing. By
default all elements are "empty". To get the default behaviour, all header elements should be left
blank, or removed altogether. Example:

<soap:Envelope xmlns:rapdv="http://www.risaris.com/namespaces/xmiddle" ↩
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" ↩
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <soap:Header>
 <rapdv:AdabasEmployeeHeader>
 <Version/>
 <ConversationState/>
 <ConversationId/>
 <TransactionState/>
 <TransactionId/>
 </rapdv:AdabasEmployeeHeader>
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

Conversational Processing

Every time a SOAP request is made to SOA Gateway, this request must be associated with a spe-
cific context. By default, a new context is created and destroyed for every SOAP Request.

The user may also use the SOAP Headers to re-use and re-connect to a specific context.

When a user starts, re-uses, and ultimately finishes with their context, the process is known as a
"conversation". In the SOAP Header, the "ConversationState" and "ConversationId" are used for
conversational processing, see below for more information.

Reference16

SOAP

The Version Element

The 'Version' element is currently unused. It will be brought into use in future versions of SOA
Gateway.

The ConversationState Element

The 'ConversationState' element is used to control conversation processing. It should be one of
the following:

DescriptionState

A new conversation is being started. In this case, the ConversationID (see below) value must by
NULL or an error will occur.

New

An existing conversation is activewithwhich the current SOAPmessage should be associated.When
the SOAP request is processed, the conversationmust remain active as there are further SOAP requests
to be sent. The ConversationID foundmust have been returned as a result of a previous 'new' request.

Old

An error will occur if the ConversationId (see below) provided cannot be found.

An existing conversation is activewithwhich the current SOAPmessage should be associated.When
the SOAP request is processed, the conversationmust be terminated. The ConversationID (see below
) found must have been returned as a result of a previous 'new' request.

End

An error will occur if the ConversationId provided cannot be found.

The ConversationId Element

TheConversationId unquely identifies the conversation, and it returned only after a 'New' request
is successfully processed. The user should never modify or create this ID. The ConversationId
must be present on an 'Old' or 'End' request.

Transaction Processing

In SOAGateway, the platform's TransactionManager (TM)will be engaged to handle transactions.
A default TM is provided as part of the ASG installation. It can be found in <asg install dir>/librar-
ies/transactionManagerDummyDll.so. The environment variable TMSTUB is used to point to the
transactionmanager shared object. This shared object provides interfaces to handle the transaction.

Note: The framework for engaging transactionmanagers is subject to change. Currently the
transactionManagerDummyDll.so does not provide any "real" transactionality. Rísarís are
current looking for early adopters to work with us to fully implement and test this techno-
logy.

In the SOAP Header, the "TransactionState" and "TransactionId" are used for transactional pro-
cessing; see the table below for more information.

17Reference

SOAP

The TransactionState Element

If a transaction involves modifications that will occur over multiple SOAP messages, the conver-
sational processing logic must be used to associate the SOAPmessages and thus the transactional
information.

If a transaction involvesmodifications that will all be completed as part of the one SOAPmessage,
the conversational processing logic is not required.

When the request uses an active conversation, and is add/update/delete, a transaction is implicitly
started.

If a conversation is ended before the transaction is committed, a implicit back out will occur.

The Transaction State may be one of the following:

DescriptionState

This will cause a commit to be issued when the current SOAP message has been processed.Commit

If no conversation existed previously for this SOAP request, an error will result.

When returned in the SOAP response, it indicates that the transaction has been committed, and
transaction ID is provided for reference.

This will cause a backout to be issued when the current SOAP message has been processed.Backout

If no conversation existed previously for this SOAP request, an error will result.

When returned in the SOAP response, it indicates that the transaction has been backed out, and
transaction ID is provided for reference.

The Transaction Id Element

The Transaction ID is purely informational, and has no functional bearing on the transaction
process. It is returned on any SOAP message and is intended to be used for tracking purposes.

It is not mandatory to provide the Transaction ID. As only 1 transaction can ever be active on a
conversation, SOA Gateway will auto-reconnect to the current transaction internally.

Reference18

SOAP

Adabas specific headers

When working with Adabas services, there are a number of specific SOAP headers that will be
available

These headers are listed in the Using SOA Gateway with Adabas section.

Relational database specific headers

When working with relational database services, i.e. MySQL, MS SQL Server, DB2, Oracle, etc,
the specific SOAP Header are

Turn off the AutoCommit flag on the databaseSOAGateway_Internal_AutoCommit

Soap Operations for Server Configuration

SOA Gateway exposes a number of SOAP operations / methods to retrieve and alter the SOA
Gateway Server Configuration from any SOAP enabled client.

Note: These interfaces are likely to change in the future, they are provided on a trial basis,
be aware that you might have to change any "applications" built on top of these interfaces
! As soon as "stable" interfaces are available, this fact will be announced and documented.

adaptorList

This operation is used to load up a SOAGateway driver library, and return the assoicated internal
information.

This operation takes 1 input, libraryName should be set to the name of the library to load and
query.

configList

This operation is used to list the current configuration in use by the SOA Gateway server. The
current configuration is useful where you wish to make changes to existing configuration items,
or just to make sure you are not trying to add, for example, a resource URI that is already in use.

This operation currently has no options.

The full configuration document, minus the XML header, is returned in the soap response.

19Reference

SOAP

configRemove

This operation is used to reset the value of an item in the configuration, or to remove an item from
the configuration.

Only certain items or levels of items may be altered using this operation. The definition in the
WSDL showswhat elements may be used. Refer to it for further details onwhat type of itemsmay
be removed and what items may only have their value reset.

A configuration item which is reset will assume it's default value if it is an item that cannot be re-
moved from the configuration.

Configuration items changed by this operation are effective as soon as the engine can make them
so.

This operation currently has no options.

configReplace

This operation is used to replace the current configuration file, or to write a new configuration to
file on the server.

If the element 'configFileName' is omitted or left empty, then the configuration file currently in use
will be overwritten - if it is in the configuration directory.

If the element 'configFileName' is specified, then the configuration will be written to a file of that
name in the configuration directory.

The newly written configuration will not come into effect until the SOA Gateway server is next
started.

If the element 'configFileName' was specified, and you wish to use this configuration, then before
re-starting the SOA Gateway server you must alter the system environment variable
XMIDDLE_CONFIGURATION_FILE so that it refers to your new configuration file.

This operation currently has no options.

configSet

This operation is used to set the value of an item in the configuration, or to add an item to the
configuration.

Only certain items or levels of items may be altered using this operation. The definition in the
WSDL showswhat elements may be used. Refer to it for further details onwhat type of itemsmay
be added and what items may only have their value altered.

Reference20

SOAP

Configuration items changed by this operation are effective as soon as the engine can make them
so.

This operation currently has no options.

21Reference

SOAP

22

3 REST

■ Introduction .. 24

23

Introduction

Web services can also use other technologies, apart from SOAP, such as RESTful implementations
on top of HTTP. Representational State Transfer (REST) is an approach based on the architectural
style of theWeb itself. The SOAGateway also provides thisURLbased approach to access resources.

REST Overview

SOA Gateway allows users to access any web service via a REST-style URL request. In general,
this is a more simplistic way of accessing services, useful in demo scenarios, and with clients that
do not have support for SOAP, but do have support for retrieving URLs information (such as
Microsoft Excel).

A REST request is similar to the WSDL request, but with extra arguments. Generally, it is recom-
mended that the WSDL is retrieved first, as it gives the client the ability to see what fields have
been set as keys. All operations that are possible using the WSDL are possible with REST, with
some caveats.

NotesOperation

MTOM is not supported. In the case where binary objects are returned on request, the XML
will be escaped into HTML, and a link to the binary object will also be returned.

get

HTTP POST must be used.add/update

HTTP DELETE must be used.delete

Example

The following is an example of retrieving data with a REST request

http://host:port/myService?LIST&ID=4*&Name=J*

This will attempt to call the "list" operation, passing in a value of 4* to the ID field (which has been
defined as a primary/secondary key) AND the Name field set to J*

Enhanced REST Operations

SOAGateway provides several operations for eachweb service so it has enhanced its REST imple-
mentation to support them e.g. SELECT and INVOKE. Typically these may require complex
parameters in order to be called.

http://localhost:56005/adabas_Employees_9?
SELECT
&condition[1].personnel_id>50012100
&condition[1].personnel_id<=50012700
&condition[2].personnel_id=50012900

Reference24

REST

The example above specifies 2 condition blocks. This will return data where the (personnel_id >
50012100 and personnel_id <= 50012700) or personnel_id = 50012900

Database WSDLs

A SOA Gateway database WSDL defines requests which reflect database access.

Supported Requests

1. LIST

2. GET

3. DELETE

4. ADD

5. UPDATE

6. SELECT

7. SELECTCOUNT

URI

As usual in the definitions element there will be a value for the targetNamespace uri:

<definitions targetNamespace="uri://46.46.46.46:56421/Customers"
name="CustomersRootCollection">

The uri gives us the starting portion of a REST request:

http//46.46.46.46:56421/Customers

Note that in Portus WSDLs a unique identifier (UNIQID) is prepended to various elements and
aslo contained in the uri e.g. in this case Customers in the name CustomersRootCollection.

Messages

For each the above requests there will be a message entry in the WSDLwith the following names:

getRequest, listRequest, deleteRequest, addRequest, updateRequest, selectRequest and selectCoun-
tRequest

e.g.

<message name="listRequest">

<part name="CustomersGroupListKey" element="asg:CustomersGroupListElement"/>

</message>

25Reference

REST

.

.

<message name="getRequest">

<part name="CustomersGroupGetKey" element="asg:CustomersGroupGetElement"/>

</message>

.

.

<message name="deleteRequest">

<part name="CustomersGroupDeleteKey" element="asg:CustomersGroupDeleteElement"/>

</message>

.

.

.

Note that there will be some others which are in the WSDL which are not supported in a REST
request i.e. selectNext and selectEnd.

e.g.

<message <message name="selectNextRequest">

<part name="CustomersGroupSelectNextRequest" element="asg:CustomersGroupSelectNextEle-
ment"/>

</message>

Each message element has a part element which gives further details about the request structure
via REST:

LIST

<part name="UNIQIDGroupListKey" element="asg:UNIQIDGroupListElement"/>

<xs:element name="UNIQIDGroupListElement" type="asg:UNIQIDGroupKeyType"/>

<xs:complexType name="UNIQIDGroupKeyType">

<xs:sequence>

Reference26

REST

<xs:element name="ID" nillable="true" type="xs:int"/>

<xs:element name="Account_ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this pointwe knowour input parameter(s). A feature of the LIST request is that these parameters
can be wild carded as shown below and/or omitted:

http://46.46.46.46:56421/Customers?LIST&ID=*

http://46.46.46.46:56421/Customers?LIST&ID=2

http://46.46.46.46:56421/Customers?LIST&ID=2*

http://46.46.46.46:56421/Customers?LIST&ID=*&Account_ID=2*

http://46.46.46.46:56421/Customers?LIST&Account_ID=2*

http://46.46.46.46:56421/Customers?LIST&Account_ID=*5

GET

<part name="UNIQIDGroupGetKey" element="asg:UNIQIDGroupGetElement"/>

<xs:complexType name="UNIQIDGroupPrimaryKeyType">

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this pointwe knowour input parameter(s). Note that aGET targets a specific row in the database
and returns one record or none if not found:

http://46.46.46.46:56421/Customers?GET&ID=25

DELETE

<part name="UNIQIDGroupDeleteKey" element="asg:UNIQIDGroupDeleteElement"/>

<xs:element name="UNIQIDGroupDeleteElement" type="asg:UNIQIDGroupPrimaryKeyType"/>

<xs:complexType name="UNIQIDGroupPrimaryKeyType">

27Reference

REST

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s). Note that a DELETE targets a specific row in the
database. If successful it returns a ‘delete successful’ message or an error stating that it does not
exist.

http://46.46.46.46:56421/Customers?DELETE&ID=25

ADD

<part name="UNIQIDRoot" element="asg:UNIQIDRootAddElement"/>

<xs:element name="UNIQIDRootAddElement" type="asg:UNIQIDRootType"/>

<xs:complexType name="UNIQIDRootType">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="UNIQIDGroup"
type="asg:UNIQIDGroupType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UNIQIDGroupType">

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="Surname" type="xs:string"/>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="xs:string"/>

<xs:element name="Phone" type="xs:string"/>

Reference28

REST

<xs:element name="SSN" nillable="true" type="xs:int"/>

<xs:element name="Account_ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s). All elements are at the same level i.e. not in a
structure so can be sequentially added to the REST request.

http://46.46.46.46:56421/Customers?ADD&ID=Value&FirstName=Value&Surname=Value&Street=Value&City=Value&State=Value&Zip&Phone=Value&SSN&Account_ID=Value

UPDATE

<part name="UNIQIDRootUpdate" element="asg:UNIQIDRootUpdateElement"/>

<xs:element name="UNIQIDRootUpdateElement" type="asg:UNIQIDRootType"/>

<xs:complexType name="UNIQIDRootType">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="UNIQIDGroup"
type="asg:UNIQIDGroupType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UNIQIDGroupType">

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="Surname" type="xs:string"/>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="xs:string"/>

<xs:element name="Phone" type="xs:string"/>

29Reference

REST

<xs:element name="SSN" nillable="true" type="xs:int"/>

<xs:element name="Account_ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s). All elements are at the same level i.e. not in a
structure so can be sequentially added to the REST request. Note that as ID (see UNIQID-
GroupPrimaryKeyType)is the primary key, the value passed in the request should exist in the
database table.

http://46.46.46.46:56421/Customers?UPDATE&ID=existingKeyValue&FirstName=Value&Sur-
name=Value&Street=Value&City=Value&State=Value&Zip&Phone=Value&SSN&Account_ID=Value

SELECT

<part name="UNIQIDGroupSelectKey" element="asg:UNIQIDGroupSelectElement "/>

<xs:element name="UNIQIDGroupSelectElement" type="asg:UNIQIDGroupSelectType"/>

<xs:complexType name="UNIQIDGroupSelectType">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="1" name="condition">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="ID">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="Condition" type="asg:conditionType"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Reference30

REST

<xs:element maxOccurs="unbounded" minOccurs="0" name="Account_ID">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="Condition" type="asg:conditionType"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s).

N.B.

Both select and selectCount have input the elements of which are contained in a structure. The
parent element is condition which will contain elements which are primary and secondary keys
(in the underlying database). The SOAP equivalent message portion would be:

<!--1 or more repetitions:-->

<condition>

<!--Zero or more repetitions:-->

<ID Condition="?"></ID>

<!--Zero or more repetitions:-->

<Account_ID Condition="?"></Account_ID>

</condition>

31Reference

REST

(As per the WSDL the Condition type can be EQ, NE, LT, LE, GT, GE, STARTS, CONTAINS and
ENDS).

<condition>

<ID Condition="GT">4</ID>

<ID Condition="LE">10</ID>

</condition>

<condition>

<Account_ID Condition="EQ">23</Account_ID>

</condition>

The above element will select records where the ID is greater than 4 AND less than or equal to 10
OR where Account_ID is equal to 23.

There are 2 condition elements so use array notation for those (one being the base).

Use numeric notation for the condition type i.e. for GT use >

e.g.

http://46.46.46.46:56421/Customers?SELECTCOUNT&condition[1].ID>4&condition[1].ID<=10&con-
dition[2].Account_ID=23

Program WSDLs

A SOA Gateway WSDL which is program based supports an INVOKE request.

Simple Example

Excerpt from typical programWSDL:

<xs:element name="invokeInputElement">

<xs:complexType>

<xs:sequence>

<xs:element name="SOABSP_CALCULATRoot">

<xs:complexType>

<xs:sequence>

Reference32

REST

<xs:element name="SOABSP_CALCULATGroup">

<xs:complexType>

<xs:sequence>

<xs:element name="OPERATION" type="xs:string"/>

<xs:element name="OPERAND_1" nillable="true" type="xs:int"/>

<xs:element name="OPERAND_2" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

■ In the definitions element there will be a value for the targetNamespace uri:

<definitions targetNamespace="uri://www.versatec.info:56421/SOABSP_CALCULAT" …

The uri gives us the starting portion of a REST request:

http://www.versatec.info:56421/SOABSP_CALCULAT

Note also that in PortusWSDLs a unique identifier (UNIQID) is prepended to various elements
and also contained in the uri e.g. in this case SOABSP_CALCULAT:

<xs:element name="SOABSP_CALCULATRoot">
■ Therewill be an elementwith a name of invokeInputElement. This is reflected in the F=INVOKE
portion of the REST request.

http://www.versatec.info:56421/SOABSP_CALCULAT?F=INVOKE
■ invokeInputElement will contain an element with a name UNIQIDRoot
■ UNIQIDRoot will contain an element with a name UNIQIDGroup

33Reference

REST

■ UNIQIDGroupwill contain the elements that are passed in the INVOKE for a REST request e.g.

<xs:element name="OPERATION" type="xs:string"/>

<xs:element name="OPERAND_1" nillable="true" type="xs:int"/>

<xs:element name="OPERAND_2" nillable="true" type="xs:int"/>

http://www.versatec.info:56421/SOABSP_CALCULAT?F=INVOKE&OPERATION=mul&OPER-
AND_1=2345&OPERAND_2=6789

Complex Example

Excerpt from more complex programWSDL:

<xs:element name="invokeInputElement">

<xs:complexType>

<xs:sequence>

<xs:element name="QEESPN01Root">

<xs:complexType>

<xs:sequence>

<xs:element name="QEESPN01Group">

<xs:complexType>

<xs:sequence>

<xs:element name="QEESPS01">

<xs:complexType>

<xs:sequence>

<xs:element name="REDEFINE_001_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="TIPO_IPF" type="xs:string"/>

<xs:element name="REDEFINE_002_NUM_IPF">

<xs:complexType>

Reference34

REST

<xs:sequence>

<xs:element maxOccurs="10" name="NUMN_IPF" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_DESDE" nillable="true" type="xs:decimal"/>

<xs:element name="REDEFINE_003_COD_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="ALFA2" type="xs:string"/>

<xs:element name="ALFA8" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_NAC" type="xs:string"/>

<xs:element maxOccurs="10" name="DUP_F10" nillable="true" type="xs:decimal"/>

<xs:element maxOccurs="100" name="D_SALIDA">

<xs:complexType>

<xs:sequence>

<xs:element name="MOMMAP" type="xs:string"/>

<xs:element name="SALIDA_DATA" type="xs:string"/>

</xs:sequence>

</xs:complexType>

35Reference

REST

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

■ In the definitions element there will be a value for the targetNamespace uri:

<definitions targetNamespace="uri://meath-nua:56008/QEESPN01" name="QEESPN01RootCol-
lection">…

The uri gives us the starting portion of a REST request:

http//meath-nua:56008/QEESPN01

In Portus WSDLs a unique identifier (UNIQID) is prepended to various elements and also con-
tained in the uri e.g. in this case QEESPN01

■ Therewill be an elementwith a name of invokeInputElement. This is reflected in the F=INVOKE
portion of the REST request.

http//meath-nua:56008/QEESPN01?F=INVOKE
■ invokeInputElement will contain an element with a name UNIQIDRoot
■ UNIQIDRoot will contain an element with a name UNIQIDGroup
■ UNIQIDGroupwill contain the elements that are passed in the INVOKE for a REST request e.g.

<xs:element name="QEESPS01">

<xs:complexType>

Reference36

REST

<xs:sequence>

<xs:element name="REDEFINE_001_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="TIPO_IPF" type="xs:string"/>

<xs:element name="REDEFINE_002_NUM_IPF">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="10" name="NUMN_IPF" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_DESDE" nillable="true" type="xs:decimal"/>

<xs:element name="REDEFINE_003_COD_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="ALFA2" type="xs:string"/>

<xs:element name="ALFA8" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_NAC" type="xs:string"/>

<xs:element maxOccurs="10" name="DUP_F10" nillable="true" type="xs:decimal"/>

37Reference

REST

<xs:element maxOccurs="100" name="D_SALIDA">

<xs:complexType>

<xs:sequence>

<xs:element name="MOMMAP" type="xs:string"/>

<xs:element name="SALIDA_DATA" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
■ If the element nameswithinUNIQIDGroup are in a structure then the REST requestmust reflect
that:

QEESPN01?INVOKE&QEESPS01.REDEFINE_001_IPF.TIPO_IPF=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[0]=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[1]=0&QEESPS01.RE-
DEFINE_001_IPF.RE-
DEFINE_002_NUM_IPF.NUMN_IPF[2]=0&QEESPS01.FECHA_DESDE=0&QEESPS01.RE-
DEFINE_003_COD_IPF.ALFA2=0&QEESPS01.RE-
DEFINE_003_COD_IPF.ALFA8=0&QEESPS01.FECHA_NAC=0&QEESPS01.DUP_F10[0]=0&QEESPS01.D_SALIDA[0].MOMMAP=0&QEESPS01.D_SALIDA[0].SALIDA_DATA=0&QEESPS01.D_SALIDA[1].MOMMAP=22&QEESPS01.D_SALIDA[1].SALIDA_DATA=55

1. QEESPS01 is the top level element name. It has a child REDEFINE_001_IPFwhich in turn has
a child element TIPO_IPF so the parameter should be specified as:

&QEESPS01.REDEFINE_001_IPF.TIPO_IPF=0

2. If an element can occur more than once (maxOccurs > 1) then use array notation:

&QEESPS01.REDEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[0]=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[1]=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[2]=0

&QEESPS01.D_SALIDA[0].MOMMAP=0&QEESPS01.D_SALIDA[0].SALIDA_DATA=0&QEESPS01.D_SALIDA[1].MOMMAP=22&QEESPS01.D_SALIDA[1].SALIDA_DATA=55

Reference38

REST

XSL Transformation

REST requests also support XSL transformation. The XSL file should be defined in the Control
Centre, and have the same name as the XRD and XSD file. When a REST request is made, the URL
for the XSL is added into the returned XML response, thus allowing the client to retrieve the XSL,
and apply the transformation.

For clients that do not support client-sideXSL transformation, such as someAndroid andBlackberry
devices, it is possible to apply the transformation on the server side (e.g. SOAGateway will apply
the transformation, and return the transformed data). This is determined by theHTTPUser-Agent
header, and should normally be done transparently. It is possible to force client or server trans-
formation with an option on the REST URL.

http://host:port/myService?LIST&__xslTransform=server&ID=1*

http://host:port/myService?LIST&__xslTransform=client&ID=1*

Using different encodings

See here for more information about the __encoding option on REST request.

39Reference

REST

40

4 Frequently Asked Questions

■ How do I modify the machine identifier in the JESMSGLG? .. 42

41

How do I modify the machine identifier in the JESMSGLG?

During the FTP of SOA Gateway to z/OS, the machine identifier will be set to the hostnam or IP
address of the FTP server. This text will be displayed on messages appearing in the JESMSGLG.
To change this, modify the SYSPARMmember of the CONF dataset and set this as required. It is
recommended that this is set to the hostname or IP address of the z/OS machine.

Reference42

Frequently Asked Questions

5 Performance Hints

This section outlines some suggestions to improve the performance of SOA Gateway.

■ Turning off Access Logging

Each time SOAGateway handles a request, it writes some logging information to the access log
via Apache. By default, this file is access_log / access.log / DD:ACCESS based on the platform,
*nix, Windows, z/OS respectively.

To restrict this logging, see the following Apache directive here

To remove this logging, remove the CustomLog directive from your httpd.conf / HTCONF. This
can be accomplished by adding a # in front of the directive.

■ Use PFS caching

This only applies on z/OS or z/VSE.

Edit your SYSPARM and ensure caching of the SOA Gateway filesystem has been turned on.
The option is CACHESIZE=N option on the CDI_DRIVER directive

E.g
CDI_DRIVER=('pfs,PAANPFS,CONTAINER=CIO://DD:PFS,CHARSET=ASCII,LRECL=4096,CACHESIZE=4096')

■ Enable/disable Streaming

By default, when a user issues a list request, with key data of "*", i.e. listing all records in the
database, SOA Gateway will send back records in a "streamed" fashion. For example, as soon
as one record is retrieved, it is immediately sent back to the client using the HTTP chunking
protocol. It has been found that this is themost effective way of handling large amounts of data,
but there is a small performance offset in doing this. There are a number of directives that affect
how streaming is applied. These directives must be part of the Apache configuration file.

SoaGatewayStreaming On : This is the default setting. Responses will be streamed back to the client
using the HTTPChunking protocol when a list is requested that will retrieve every record in the database.

43

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html#customlog

SoaGatewayStreaming Off : No streaming will ever take place. Use this option if you are concerned
about performance, and will be listing every record in the database.
SoaGatewayStreaming Force : SOA Gateway will always to attempt to stream data back to the client.
This is most effective if the SOA Gateway is running on a machine with low resources, and low memory
usage is a priority.

■ Change MPM settings

The SOA Gateway uses the Apache worker MPM to handle requests. This can be modified to
increase server threads, therefore allowing the server to serve more requests. See the Apache
documentation for more information.

Important: Ensure that the ServerLimit of 1 is maintained at all times. SOA Gateway will
not function correctly if more than server process is started.

Reference44

Performance Hints

http://httpd.apache.org/docs/2.0/mod/worker.html

6 Internationalization

■ Which codepage do I use? .. 46
■ SOAP versus REST differences ... 46
■ Troubleshooting .. 47

45

SOA Gateway uses IBM's International Components for Unicode to support internationization
(i18n). This supports text data conversion between almost any codepage.

Which codepage do I use?

This depends on what sort of information your service is going to return. Generally the ASCII
codepage is sufficient for the English language. The ISO-8859-1 (often called latin1) codepage
should suffice for most languages of Western Europe. The windows-1251 codepage supports
Cyrillic languages such as Russian andBulgarian. The ISO-8859-8 codepage can be used forHebrew
script.

The ICU home page has provided a useful web pagewhich displays the ICU internal name, and
a list of the aliases that SOA Gateway will recognise. This page will also display the codepage
map, which will allow you to choose the codepage best suited to your service.

SOAP versus REST differences

Generally when using WSDL and SOAP, once the correct codepage has been set, the payload
should be recognised or returned correctly.

When using REST requests, things are slightly different. Non-ASCII characters entered on a URL
bar of a browser will be escaped into their native hex value, of the form %XX. This native hex
value differs depending on what codepage the browser recognises the character as. For example,
a browser running in the latin1 codepage will recognise Á as %C1, but a browser running in the
Cyrillic codepage will recognise Б as %C1.

For this reason SOA Gateway allows users to provide an extra field on the REST request. This
field is called __encoding. Thus users can indicate what codepage their browser is running in.

Important: By default, SOA Gateway assumes the escaped values are in the ISO-8859-1. The
__encoding field is not required in this case.

Example 1

The browser escapes the Russian Б into %C1. You need to tell SOA Gateway that this is the
Cyrillic encoding.

The URL should be http://host:port/Service?LIST&key=%C1&__encoding=windows-1251.

Example 2

The browser escapes the Hebrew Shin (�) into %F9. You need to tell SOA Gateway that this is the
Hebrew encoding

Reference46

Internationalization

http://site.icu-project.org/home
http://demo.icu-project.org/icu-bin/convexp

The URL should be http://host:port/Service?LIST&key=%F9&__encoding=iso-8859-8.

Troubleshooting

When SOA Gateway cannot display a character in the requested codepage, it writes a message to
the error log, and continues to attempt to process the rest of the payload. If you find your responses
are missing some characters, check the error_log / error.log / XMIDCARD on *nix, Windows and
z/OS respectively.

The error message to check should be something like this :

Unicode char 0xF1 is not representable in encoding ASCII.

47Reference

Internationalization

48

7 Creating a Stylesheet for your SOA Gateway Data

■ Create HTML page from City XML .. 50

49

XSL stands for EXtensible Stylesheet Language, and is a style sheet language for XML documents.
XSLT stands for XSL Transformations.

XSLT can be applied to the response payload of SOA Gateway REST requests.

It is commonly used, but not restricted, to creating HTML pages based on the REST response.

When configured to use XSLT, a SOA Gateway service will (by default) return an XML stylesheet
processing instruction embedded in the XML. Therefore, the client consuming this data should
be able to load the XSL link, and apply the XSLT to the payload. In some cases, the client may not
have the ability to understand XML processing instructions (browsers on mobile devices are a
good example). In this case, SOA Gateway has the ability to apply the XSLT on the server side,
and send the transformed results. In this case, providing the __xslTransform=server option on the
REST request will tell Portus to apply the XSLT before sending the payload, and no XML stylesheet
instruction will be included.

E.g http://host/Service?LIST&ID=*&__xslTransform=server

Create HTML page from City XML

■ When this step is completed you should have a Service similar to that shown below e.g. a Service
capable of accessing the city table.

Reference50

Creating a Stylesheet for your SOA Gateway Data

■ A generic stylesheet is provided which can be modified to support your Service. Save the fol-
lowing XSL file to disk.

Important: The name of the saved stylesheet has to be in the format 'ServiceName_ver-
sion.xsl'. e.g. we will save our file as city_v1.xsl

■ If you do not already have a project created see here on how to do so. In our casewe have created
a project namedDemo. If this is not visible openWindow -> ShowView ->Navigator You should
have a view similar to this:

51Reference

Creating a Stylesheet for your SOA Gateway Data

■ Right-click your project in the Navigator View and select Import
■ ExpandGeneral and select File System. ClickNext
■ Click Browse and select the directory where you saved the above XSL. Check the XSL, and click
Finish e.g.

Reference52

Creating a Stylesheet for your SOA Gateway Data

■ Double-click your XSL file to open it for editing in a default editor or right-click on the file and
select Open With... to choose your own editor.

■ Right-click on your Service in the Servers View and select Edit DataView.
■ You should now have a view similar to this:

53Reference

Creating a Stylesheet for your SOA Gateway Data

■ The DataView provides us with 3 important items which are required when we come to edit
the stylesheet:

1. The ROOT name: e.g. cityRoot.

2. The GROUP name e.g. cityGroup.

3. The element names e.g. ID, Name, CountryCode, District and Population.
■ Select the XSL tab to edit its contents.

1. Find the entry <xsl:template match="changeThisRoot"> and modify changeThisRoot to your
root name.

2. Find the entry <xsl:template match="changeThisGroup"> and modify changeThisGroup to
your group name.

3. Find the entry ColumnHeader1. It should be wrapped in TR tags as follows:

<TR>

Reference54

Creating a Stylesheet for your SOA Gateway Data

<Td>ColumnHeader1</Td>

</TR>

Create as many Td tags entries within the TR tag as there are elements in your DataView e.g.
in this case 5.

Change each ColumnHeader1 value to the element names. For headers these do not have to
match the element names but for simplicity we will do so here e.g.

<TR>

<Td>ID</Td>

<Td>Name</Td>

<Td>CountryCode</Td>

<Td>District</Td>

<Td>Population</Td>

</TR>

4. Find the entry XRDElementName1. It should be wrapped in tr tags as follows:

<tr>

<td><xsl:value-of select="XRDElementName1" /></td>

</tr>

Create as many td tags entries within the tr tag as there are elements in your DataView e.g.
in this case 5.

Change each XRDElementName1 value to the element names.

Important: These must match the element names exactly e.g.

<tr>

<td><xsl:value-of select="ID" /></td>

<td><xsl:value-of select="Name" /></td>

<td><xsl:value-of select="CountryCode" /></td>

<td><xsl:value-of select="District" /></td>

<td><xsl:value-of select="Population" /></td>

55Reference

Creating a Stylesheet for your SOA Gateway Data

</tr>

5. Save the XSL (Ctrl+S).

6. In theNavigator View left-click the XSL file and, holding down the left button, drag and drop
the file onto the Service as shown:.

7. You should see a message similar to this in the SOA Gateway Action Log:.

8. Select the Service in the Servers View. If the Properties View is not open select Window ->
Show View -> Properties.

Select the 'WSDLURL is ...' entry in the Properties Viewwhich should open a browserwindow.

In the browser window change ?WSDL to ?LIST&CountryCode=BO* e.g. http://local-
host:56005/city?LIST&CountryCode=BO* and hit enter.

The results should be displayed as follows:

Reference56

Creating a Stylesheet for your SOA Gateway Data

9. Congratulations! You have now created a stylesheet for your Service.

57Reference

Creating a Stylesheet for your SOA Gateway Data

58

	Reference
	Table of Contents
	Reference
	1 SOA Gateway Resource Access
	Overview
	Prerequisites
	Retrieving the WSDL for your resource.
	SOA Gateway Web Services Operations for Data Resources
	Specifying Key Data
	Key Types
	Using Wild card Symbols and other Generic Search criteria

	2 SOAP
	SOAP Headers
	Conversational Processing
	The Version Element
	The ConversationState Element
	The ConversationId Element

	Transaction Processing
	The TransactionState Element
	The Transaction Id Element

	Adabas specific headers
	Relational database specific headers

	Soap Operations for Server Configuration
	adaptorList
	configList
	configRemove
	configReplace
	configSet

	3 REST
	Introduction
	REST Overview
	Example
	Enhanced REST Operations

	Database WSDLs
	Supported Requests
	URI
	Messages

	Program WSDLs
	Simple Example
	Complex Example

	XSL Transformation
	Using different encodings

	4 Frequently Asked Questions
	How do I modify the machine identifier in the JESMSGLG?

	5 Performance Hints
	6 Internationalization
	Which codepage do I use?
	SOAP versus REST differences
	Troubleshooting

	7 Creating a Stylesheet for your SOA Gateway Data
	Create HTML page from City XML

