
Ostia Portus

Concepts

Version 2012-12-17

December 2012

This document applies to Ostia Portus 2012-12-17 15:50:18 (MET) and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

© Copyright Ostia 2012.
All rights reserved.

The name Ostia Software Solutions and/or all Ostia Software Solutions product names are either trademarks or registered trademarks
of Ostia Software Solutions. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents

1 Introducing SMARTS .. 1
The SMARTS Concept .. 2
Who uses SMARTS? ... 3
Why use SMARTS? .. 3
The SMARTS Server Environment .. 5
Architecture .. 6
Supported Environments ... 7
How does SMARTS work? ... 10
SMARTS Control Blocks .. 15
Implementing a SMARTS Application .. 16

iii

iv

1 Introducing SMARTS

■ The SMARTS Concept ... 2
■ Who uses SMARTS? ... 3
■ Why use SMARTS? ... 3
■ The SMARTS Server Environment ... 5
■ Architecture ... 6
■ Supported Environments .. 7
■ How does SMARTS work? .. 10
■ SMARTS Control Blocks ... 15
■ Implementing a SMARTS Application .. 16

1

The same Software AG product may run in a number of environments, each based on a different
architecture.When a product developed for one environment needs to run in another environment,
the product must be "ported" to the new environment -- a costly and time-consuming process that
must be repeated for every new level of the product.

The Software AGMultiple Architecture Runtime System (SMARTS) provides an application pro-
gramming interface (API) for porting that is independent of any particular environment. Individual
environments are mapped to this API only. Software AG products that interface with the API are
thus automatically ported to all supported S/390 mainframe environments, saving the time and
costs previously required for porting.

SMARTS is the runtime layer for a number of environments available on IBM, Fujitsu Siemens
Computers, and Fujitsu S/390 mainframe operating systems. In each environment, SMARTS im-
plements a POSIX-like layer for running POSIX-like programs.

This chapter covers the following topics:

■ The SMARTS Concept
■ Who uses SMARTS?
■ Why use SMARTS?
■ The SMARTS Server Environment
■ Architecture
■ Supported Environments
■ How does SMARTS work?
■ SMARTS Control Blocks
■ Implementing a SMARTS Application

The SMARTS Concept

Traditionally in business environments, software products were developed on S/390 mainframe
computers. The code in early programming languages was difficult to maintain and the products
often required the user to have a significant level of training. Thus the cost of using andmaintaining
the products was high.

The advent of personal computing has brought higher level programming languages that are
easier to write and maintain, and graphical user interfaces that make the products easier to use.
However, PCs will not replace the S/390 mainframe environment:

■ PCs are not as reliable as S/390 mainframe systems, which can run 24 hours a day; 7 days a
week; 52 weeks a year.

■ PCs cannot compete with the scale and performance of S/390 mainframe runtime systems.

Concepts2

Introducing SMARTS

For most large enterprises, the most cost-effective solution is server-centered with an S/390 main-
frame providing the services.

Because these issues are so important to large businesses, it is clear that S/390mainframe computers
are still needed. But porting PC products onto S/390 mainframe systems requires a costly duplic-
ation of effort and delay in implementation.

When the SMARTS API is used, products no longer need to be individually ported to multiple
architectures. If an application runs on SMARTS, it automatically runs in all supported S/390
mainframe environments.

Who uses SMARTS?

Application or product developers who wish to target the operating systems and environments
supported by SMARTS need to program to the POSIX-like API.

As SMARTS can support C, Natural, Assembler, COBOL, and similar high level languages, it can
be used by both

■ product development groups using these programming languages; and
■ user installations developing applications in the supported programming languages.

The following figure illustrates SMARTS as the Software AG Application Server:

Why use SMARTS?

As a host environment, SMARTS provides the benefits outlined in the following sections.

■ Portability of Code
■ Speed to Market
■ Layered Design
■ Common Device Interface
■ Focused Development Effort

3Concepts

Introducing SMARTS

■ Focused Support Effort

Portability of Code

OnceCprograms are ported to the SMARTSAPI, they can be run in any other appropriate SMARTS
C run-time environment by simply relinking the C code. For applications developed in program-
ming languages other than C, SMARTS provides high-level language extensions that enable you
to call the POSIX-like API from Natural, Assembler, COBOL, and similar high level languages.

By removing the cost of porting to particular environments, SMARTS makes it possible to run an
application in lesser-used environments where otherwise it would not be cost-effective to do so.

Speed to Market

Software developed on Open Systems orWindows NT is easily run on the SMARTS platform due
to the implementation of a POSIX-like interface. Once ported to the SMARTSplatform, object code
can simply be relinked to run on any supported SMARTS platform.

Ports to the S/390mainframe are quicker and since little additional portingwork is required, rollout
of the product on less-strategic S/390 mainframe platforms follows immediately. Products can
appear on SMARTS-supported S/390 mainframe platforms much more quickly with SMARTS
than without.

Layered Design

The layered structure of SMARTS means that code is split into

■ independent code, which forms the majority of the SMARTS nucleus; and
■ dependent code paths that are driven (or drive the nucleus) using well-defined interfaces.

Platform experts can make the best use of the underlying operating system technology while ap-
plications running on SMARTS see exactly the same interface layer on all platforms. This leads to
consistent code paths and robust code that can be reused by any products that run on SMARTS.

Common Device Interface

The commondevice interface (CDI) provides a "plug andplay" technology that enables the SMARTS
independent nucleus to communicate with any subsystem available on a given operating system
withoutmodifying the application. CDI also allows the creation of logical subsystems for supporting
in-store files, pipes, and so on, using the most appropriate operating system services available.

Concepts4

Introducing SMARTS

Focused Development Effort

Development resources to support S/390mainframe operating systems are characteristically limited
and therefore must be used efficiently. Well-defined interfaces make it possible for an expert on
any given operating system to implement code and communicate with any subsystems, nomatter
what group they belong to within the company. By integrating this code into SMARTS, the devel-
opment efforts of one company group become available to all groups. Focusing development re-
sources in this way means cleaner code that can be supported and improved as time goes on.

Focused Support Effort

In the same way as development, support benefits when more than one product is using the un-
derlying code base. Fixes created for one product benefit all other products using the same under-
lying SMARTS technology, which leads to a more robust run-time environment for all products.

The SMARTS Server Environment

SMARTS is a runtime system that provides:

1. a server environment on all platforms

2. one or more client environments for each supported platform.

The SMARTS server environment provides a multitasking architecture that uses blocks of storage
called "threads" in which SMARTS application programs can run. By ensuring that all application
storage is in contiguous blocks of the address space, the SMARTS server environment is in a pos-
ition to move dormant applications out of the address space to make room for other more active
users. If or when such a dormant application becomes active again, it is simply moved back into
the address space and dispatched again.

The SMARTS server environment

■ uses its multitasking structure tomake full use of operating system subtasks to drive the system
CPUs.

■ uses contiguous storage threads to give it more control over the applications' storage areas, thus
enabling it to handle more applications running in the one address space.

■ shares the underlying operating system subtasks between users and is thus not subject to restric-
tions on the number of processes that can be concurrently supported.

■ uses a state-of-the-art buffer pool management technique that ensures consistent path lengths,
no fragmentation of storage areas, and expansion and contraction of the storage areas within
the address space.

5Concepts

Introducing SMARTS

■ uses a state-of-the-art resource manager that ensures the shortest path length possible for the
serialization of resources. The technique uses only machine instructions unless it is necessary
to wait for a resource.

■ is ready now for 24-by-7 operation as the nucleus does not need to be cycled for any internal
reasons and the buffer and resource managers can handle higher than expected loads if the re-
sources are available in the address space.

Architecture

The SMARTS architecture has two distinctly different views: client and server.

Client

SMARTS supports client programs and interfaces in the various client environments such as Com-
plete, CICS, and batch.

In many cases, the client environment is required to support an interface provided by a Software
AG product. Using a server product as an example: the primary code runs in the SMARTS server
environment but access to the services is normally provided from all appropriate client environ-
ments.

An API is generally provided in the various client environments. Such APIs are supported by the
SMARTS client environment. The various client environments are detailed later in this document.

SMARTS Client Structure

Concepts6

Introducing SMARTS

Server

The SMARTS server environment

■ runs high availability, high throughput server applications.
■ includes built-in support for Software AG's System Management Server to uniformly manage
and control the services running within the environment.

■ supports all POSIX interfaces supported by the SMARTS POSIX layer. The client environment,
on the other hand, may not support all functionality or support it less efficiently than the server
environment.

SMARTS Server Structure

Supported Environments

The strength of SMARTS lies in the number of operating systems and environments it can support.
SMARTS provides the server environment on every supported operating systemwhile supporting
client environments on those operating systems according to the requirements of the SMARTS-
based applications.

Where an application is fully C-based, it is possible to compile the C code once to provide a
SMARTS C system 390 object code base that is then simply relinked to run in any of the environ-
ments listed below.

Note: The following list describeswhat SMARTSmay support anddoes not commit Software
AG to supporting those environments. Consult your local Software AG representative, or
the Software AG web site for the platform and environment support currently available.

■ Operating Systems

7Concepts

Introducing SMARTS

■ Batch and TP Monitor Support across Platforms

Operating Systems

It is intended that SMARTS will support the following operating system environments on all
version levels supported by their respective vendors:

■ OS/390 (IBM)
■ VSE/ESA (IBM)
■ VM/ESA (IBM)
■ BS2000/OSD (FSC)
■ OS IV/F4 MSP (Fujitsu)

Contact Software AG for a list of the version levels currently supported.

Batch and TP Monitor Support across Platforms

SMARTS currently runs in batch or under the Software AG S/390 mainframe TPmonitor environ-
mentCom-plete. Com-plete version 6.1 is based on SMARTS and therefore fully supports SMARTS-
based clients.

OS/390 Operating System

OS/390 is themost strategic of all S/390mainframe operating systems.Under normal circumstances,
a SMARTS-based application is ported to this operating system first and then relinked to run on
the other supported operating systems. This makes use of the many porting facilities available on
OS/390 and within the Open Edition environment.

The following SMARTS environments are supported on OS/390:

■ The SMARTS server environment
■ Batch client
■ Com-plete client
■ CICS client
■ IMS client

Concepts8

Introducing SMARTS

VSE/ESA Operating System

VSE/ESA has a strong base of customers who want to continue using it. Using SMARTS, Software
AG can easily provide customers on this platform with the latest technologies.

The following SMARTS environments are supported on VSE/ESA:

■ The SMARTS server environment
■ Batch client
■ Com-plete client
■ CICS client

VM/GCS Operating System

The SMARTS server environment is supported on VM/GCS.

BS2000/OSD Operating System

Like VSE/ESA, BS2000/OSD has a strong base of customers who want to continue using it. Using
SMARTS, Software AG can easily provide customers on this platformwith the latest technologies.

The following SMARTS environments are supported on BS2000/OSD:

■ The SMARTS server environment
■ Batch client
■ Dialogue client

OS IV/F4 MSP (FACOM) Operating System

The following SMARTS environments are supported on Fujitsu's MSP operating system:

■ The SMARTS server environment
■ Batch client
■ Com-plete client

9Concepts

Introducing SMARTS

How does SMARTS work?

Naming Conventions

The module names used in the diagram have the following format:

■ The first character of all example modules refers to the particular server component:

POSIX API componentP

anything else that relates to the SMARTS server componentR

■ The second character identifies the program type:

Assembler programsA

Job control programsJ

Assembler macro programsM

■ The third character indicates the environment used:

all environmentsA

IBM's OS/390 or MVS/ESA batch or generic memberB

IBM's OS/390 or MVS/ESA CICS specific memberC

Fujitsu's FACOM OS IV/F4 MSP batch or generic memberF

IBM's VM/GCS batch or generic memberG

IBM's OS/390 or MVS/ESA IMS specific memberI

IBM's VSE/ESA batch or generic memberV

Concepts10

Introducing SMARTS

Fujitsu Siemens Computers' BS2000/OSD batch or generic member2

All TP monitor options are included for each operating system. For example, "B" (OS/390 or
MVS/ESA) includes batch, Com-plete, CICS, and OS/TS; "V" (VSE/ESA) includes batch, Com-
plete, and CICS and OS/TS.

■ The fourth letter indicates the subsystem to which the member is related. For example:

indicates the SAS/C compiler environmentS

indicates the server nucleusN

indicates the System C compiler environmentY

The remaining letters are unique and should indicate the actual function of the module:

interface moduleINT

module containing environment-specific functionsENVF

data space management functionsDSM

user exitUXIT

Overview Diagram

The previous overview diagram presents SMARTS operation in terms of layers:

The SMARTS Wrapper1

Environment-specific initialization / termination logica

Language- / runtime-specific initialization / termination logicb

Environment-specific low-level interface module2

Application written in the C language3

Environment-independent function stubs4

Language- / runtime-specific interface module5

Nucleus (independent)6

System management (environment-dependent)7

Machine (environment-dependent)8

The diagram shows an example flow through the system. The full lines show mandatory flows,
while the broken lines show optional flows.

Each environment has a number of modules that are only used in that particular environment. In
the example, these modules are

■ PAeNMNIT, which does the environment-specific initialization and termination processing for
a program; and

11Concepts

Introducing SMARTS

■ PAeAINT, which is the low-level interface module for the environment used to access the
SMARTS nucleus to initialize and terminate the environment.

Examples of these modules are PABNMNIT and PABAINT, which are used for the OS/390 batch
environment.

To start, a C application calls the printf() function, for example.

TheCheader files, through the stubs, provide the entry to the environment-dependent initialization
layer at PAAsINT. The stub module refers only to the initialization module specific to the envir-
onment it is running on.

The call then enters the independent layer through PAANMAIN, which directs it to the relevant
function slot PAANSIO1 in the independent nucleus.

Up to this point the flow has been mandatory.

Depending on the tasks required for the application to work, the environment-dependent system
management layer may need to be used. This is reflected with an optional flow from PAANSIO1
to PAeNENVF in the diagram.

The SMARTS Wrapper

The C application is actually wrapped by two SMARTS modules:

■ PAeNMNIT is an environment-dependentmodule that takes control from the environment and
builds a standard structure for the followingmodules to use. It then passes control to PAAsLDIT.

■ PAAsLDIT is a compiler- or language-dependent module that completes the initialization of
the environment and passes control to the actual C code.

The SMARTS Environment-Dependent Interface Module

PAeAINT, the SMARTS environment-dependent interface module, is normally called only for
environment initialization and terminationwhen the language-dependent interfacemodule cannot
be used.

C Application

Code for an application in C must be written to the C POSIX standard, a widely accepted UNIX
standard for C.

When a C program is compiled, it will include standard headers. The C header files include pro-
totypes for all the functions defined to SMARTS that a program may use. Using the #pragma
preprocessor directive, the header files map each function name to a name internal to SMARTS
that begins with "PS" and is followed by six character identifying the function uniquely.

For example, the printf() function ismapped to the SMARTS internal namePSPRINTF as follows:

Concepts12

Introducing SMARTS

#pragma map (printf, "PSPRINTF")

When compiled and linked, the C program has a number of external references to these PSxxxxxx
objects. SMARTS provides these objects which are in fact simple Assembler stub modules that
provide an interface to the SMARTS POSIX nucleus. The stubs are designed to enter the SMARTS
nucleus with an indication of the function the user program has requested.

The stub contains a code that is a reference point to its particular slot within the independent
nucleus. The stub also allows the application to enter SMARTS using a branch to a V constant
(PAANINT), which is an external reference resolved at runtime. PAANINT is an entry point in
each language- / runtime-specific interface.

The Independent Stub Modules

Each function used by the application is represented by a small environment-independent stub
module.

The Compiler- or Language-Dependent Interface

PAAsINT, the compiler- or language-dependent interface module, provides an interface based on
language- or compiler-dependent constructs to the SMARTS nucleus to quickly issue function
calls from the application.

Environment-Independent Nucleus

The environment-independent layer contains pure Assembler code that can run on any S/390
mainframe. PAANMAIN is entered with a function code passed from the stub. Once the function
code is validated, it provides the offset into the independent nucleus for the function to be serviced
in SMARTS.

Environment-Dependent System Management

Environment-dependentmodules are called to carry out tasks that are specific to the environment
that the application is running on.

These functions include: file I/O processing, sockets processing, storage management, waiting,
posting, ABENDs, attaching tasks and any other functions that are environment-dependent.

13Concepts

Introducing SMARTS

Example

The diagram above can be used to illustrate the life of the printf function in SMARTS:

1. The SMARTS environment-dependent initialization module PAeNMNIT receives control and
builds the standard SMARTS environment.

2. Control is passed to the compiler- or language-dependent layer PAAsLDIT, which issues an
ENVINIT call to initialize the environment.

3. As the runtime has not yet been built, control is then passed to the environment-dependent
interface module PAeAINT, which in turn passes control to the PAANMAIN function in the
independent nucleus to satisfy the request.

If it is the first time through for the function, the environment is initialized:
■ all the environment-dependent information is loaded;
■ the POSIX program function table PGMT is read; and
■ all the addresses are put into the POSIX main control block PMCB.

The PMBNINTP, PMBNGANC, PABNKERN, and PAANSERV modules are involved.

If the function has been through before, the environment is already initialized and the function
passes on to the environment-independent layer.

4. When the environment has been successfully built, the C program receives control.

5. A C application invokes the printf function.

The function is mapped to the PSPRINTF stub, which branches to the V constant PAANINT,
the entry points to the SMARTS nucleus.

6. Environment-dependent layer:
Assuming a System/C compiler environment, the branch is to PAAYINT.

7. Environment-independent layer:
The function passes to the PAANMAINmodule, which checks the POSIX function table (PFTB)
to match the function code and obtains the offset into the POSIX main control block (PMCB)
for the function. The function is passed to the PAANSIO1 module, which determines whether
any environment-dependent system management tasks are required.

8. Environment-dependent layer:
The environment-dependentmodule for anMVS environment PABNENVF is called to perform
any required system management tasks.

9. Module termination:
When the Cmain program returns to the language- or compiler-dependentmodule PAAsLDIT,
the environment is terminated using the PAeAINT interface and control is returned to the op-
erating system through the PAeNMNIT module.

Concepts14

Introducing SMARTS

SMARTS Control Blocks

Controlling the Process of Work

The main control block of the SMARTS environment is PMCB. Its process control block is PPCB
and its thread or 'pthread' control block is PTHB.

The PMCB, PPCB, and PTHB control blocks together control the process of work.

SMARTS Environment Control Blocks

PMCB - POSIX Main Control Block

PMCB is the primary control block in the SMARTS system and represents the base control block
for the SMARTS kernel. It is the first control block to be allocated by the environment-dependent
kernel interface during kernel initialization and the last control block to be freed during kernel
termination.

The control block is generated using the PMANPMCB macro.

15Concepts

Introducing SMARTS

PPCB - POSIX Process Control Block

The POSIX process control block (PPCB) represents the logical UNIX-like process in SMARTS and
is the base control block related to a given SMARTS context. All context-related data is allocated
in or chained off this area. The PPCB is allocated in global storage the first time a SMARTS context
issues a SMARTS call. It is allocated in global storage as by default it will be chained from the
PMCB.

The PPCB is generated using the PMANPPCB macro.

PTHB - pthread (POSIX Thread)

The pthread represents the fundamental unit of work within SMARTS. The POSIX thread control
block (PTHB) contains pointers to any storage that is relative to the piece of work, which includes
pointers to various event control blocks (ECBs).

The PTHB is generated using the PMANPTHB macro.

Information Control Blocks

PAANPFTB - POSIX Function Table

The POSIX function table control block (PAANPFTB) contains information about each function:

■ name of the function; for example, printf()
■ offset into the PMCB of the address of the program that implements the requested function
■ input parameters
■ return values

PABNPGMT - Program Table

The POSIX program table control block (PABNPFTB) contains a list of modules to be loaded; for
example, PAANSIO1.

Implementing a SMARTS Application

The effort required to implement an application on SMARTSdepends on theprogramming language
used. The following sections describe the restrictions and efforts required in each case.

■ Programming Language Used
■ C-based Programs

Concepts16

Introducing SMARTS

■ Installation and Maintenance

Programming Language Used

SMARTS provides the best possible support for any chosen programming language.

Given a programming language, the effort required fromSMARTS to run the application or product
on other SMARTS environments is discussed in the following paragraphs.

C-based Applications

Because SMARTS essentially replaces the run-time environment for a C-based application, one of
the supportedC compilersmust be used. Currently, support is provided for the System/C compiler,
which is the strategic compiler used within Software AG. In the future, support may be provided
for the GNU and IBM C compilers.

Once the environment is supported, SMARTS provides a run-time library that is invoked by using
the C headers supplied on the SMARTS source library. This causes the C compiler to call an ex-
ternal SMARTS API function stub, which passes control to the SMARTS nucleus to perform the
requested function.

While the stubs themselves are independent of the environment, environment-dependentwrappers
are required for each supported SMARTS environment and programming language. While the C
code must be compiled once to use the SMARTS C headers, the object must be compiled for each
different environment to include the appropriate wrappers. To get a C program that runs in one
SMARTS environment to run in a different C environment requires that you link the C object with
the appropriate SMARTS environment-dependent code.

Assembler Language Programs

Assembler language programs are similar to C language programs in that they call an environment-
dependent programwith exactly the same interface. Theprogrammay load the appropriate interface
into a field that can be addressed by the interface, or the Assembler program may be linked with
the appropriate environment-dependent Assembler interface in a way similar to C programs.

Other Programming Languages

Other programming languages use standard SMARTShigh-level programming language interfaces
that are known by the same name in all SMARTS environments. The environment dependencies
are handledduring the SMARTSenvironment installation and configuration stages so that programs
written in any of these programming languages will run without change in the different SMARTS
environments.

17Concepts

Introducing SMARTS

C-based Programs

Generation

Due to the nature of C programs and open-systems development techniques, there is a trend to-
wards using "cross-compilers" on the open-systems platforms themselves or on PCs. These cross-
compilers take C code and headers on the platform where they are running and produce system
370 object code that can be transferred to the S/390 mainframe system and linked to run on those
systems. This solves problems such as the following:

■ C supports external names longer than 8 characters, which is the standard on most S/390
mainframe systems. By using the file system on an open-systems or PC platform, there is no
requirement to reduce external names longer than 8 characters to 8 characters and to make the
appropriate changes for included header files.

■ Most product generation uses makefile support, which does not port to the S/390 mainframe
platforms.

The general goal is to compile and partially link code on the PC or open-systems platform and
FTP the generated code to the target platform for a final link of the system and testing.

Currently, Software AG supports the System/C cross-compilers that can produce system 370 code.
In the future, support may be extended to the GNU cross-compiler.

Compiling

During compilation, the cross-compiler uses the SMARTS C header files to resolve the external
library names to the external SMARTS names.

Linking/Binding

After the object code has been created by the compiler, a two-phase link process is generally re-
quired.

The first phase, sometimes known as the "prelink", is run on the PC. Its purpose is to produce ESD
format object modules that can be processed by the linkers /binders on all the target platforms.
The prelink should also include the SMARTS independent stubs from the SMARTS SDK so that
the only unresolved references are for the environment-dependent code that will be resolved
during the final link.

After all the prelinking, the second or final phase of the link occurs on the target platform. It involves
including the platform SMARTS environment-dependent code required to run the code in a spe-
cific SMARTS environment.

Concepts18

Introducing SMARTS

Testing

Testing generally follows the compile and prelink phase on the PC or open systems platform. The
prelinked code is FTPed to the target platform and relinked for the appropriate environment.

Testing will generally start in a batch environment. If the software is targeted exclusively at client
environments, following successful testing on the initial platform the code can be transferred and
linked for testing in the other target platforms and environments. If the software is destined for
the SMARTS server environment, it must be linked for the SMARTS server environment and
tested. Following successful testing on the initial platform the code can be transferred and linked
for testing in the other target platforms.

19Concepts

Introducing SMARTS

Overview of C Program Generation for SMARTS

SMARTS C Program Generation Overview

Installation and Maintenance

The SMARTS server installation is a straightforward process of moving the SMARTS installation
libraries onto the local system and running a number of simple jobs steps. The SoftwareAGproduct
that uses SMARTS is installed after SMARTS itself. The whole installation can then be verified
using special procedures provided with the SMARTS-based software you are installing.

Once SMARTS is installed, multiple SMARTS-based Software AG products can be subsequently
installed, with minimal configuration required.

Concepts20

Introducing SMARTS

	Concepts
	Table of Contents
	1 Introducing SMARTS
	The SMARTS Concept
	Who uses SMARTS?
	Why use SMARTS?
	Portability of Code
	Speed to Market
	Layered Design
	Common Device Interface
	Focused Development Effort
	Focused Support Effort

	The SMARTS Server Environment
	Architecture
	Client
	Server

	Supported Environments
	Operating Systems
	Batch and TP Monitor Support across Platforms
	OS/390 Operating System
	VSE/ESA Operating System
	VM/GCS Operating System
	BS2000/OSD Operating System
	OS IV/F4 MSP (FACOM) Operating System

	How does SMARTS work?
	Naming Conventions
	Overview Diagram
	The SMARTS Wrapper
	The SMARTS Environment-Dependent Interface Module
	C Application
	The Independent Stub Modules
	The Compiler- or Language-Dependent Interface
	Environment-Independent Nucleus
	Environment-Dependent System Management

	Example

	SMARTS Control Blocks
	Controlling the Process of Work
	PMCB - POSIX Main Control Block
	PPCB - POSIX Process Control Block
	PTHB - pthread (POSIX Thread)

	Information Control Blocks
	PAANPFTB - POSIX Function Table
	PABNPGMT - Program Table

	Implementing a SMARTS Application
	Programming Language Used
	C-based Applications
	Assembler Language Programs
	Other Programming Languages

	C-based Programs
	Generation
	Testing
	Overview of C Program Generation for SMARTS

	Installation and Maintenance

