
Ostia Portus

Configuring the SMARTS Environment

Version 2012-12-17

December 2012

This document applies to Ostia Portus 2012-12-17 15:51:57 (MET) and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

© Copyright Ostia 2012.
All rights reserved.

The name Ostia Software Solutions and/or all Ostia Software Solutions product names are either trademarks or registered trademarks
of Ostia Software Solutions. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents

Configuring the SMARTS Environment .. v
1 Overview of Configuration Parameters .. 1
2 SMARTS Configuration Sources ... 5
3 Sysparm Format .. 7
4 SMARTS POSIX Layer Configuration ... 9

SMARTS POSIX Log and Trace Parameters ... 10
SMARTS POSIX Tracing Parameters ... 12
SMARTS POSIX Recovery Parameters .. 20
SMARTS POSIX Statistics Collection Parameters .. 20
SMARTS POSIX Miscellaneous Parameters .. 22
Standard CDI Definitions ... 29

5 Configuration of the SMARTS Server Environment ... 35
SMARTS Server Configuration Parameters ... 37

6 SMARTS Global Environment Variables ... 57
File Requirements ... 58
File Processing .. 58
Examples .. 59

7 Configuring Resources for SMARTS ... 61

iii

iv

Configuring the SMARTS Environment

This documentationprovides configuration information for SMARTSenvironments. It also describes
global environment variables that can be set for the whole SMARTS address space.

The configuration parameters are described under the following headings:

Overview of Configuration Parameters

SMARTS Configuration Sources

Sysparm Format

SMARTS POSIX Layer Configuration

SMARTS Server Environment Configuration

SMARTS Global Environment Variables

Configuring Resources

Configurable Tables

v

vi

1 Overview of Configuration Parameters

SMARTS POSIX Log and Trace Parameters

LOG_DATA_COLL_ELEMENT_SIZE
LOG_DATA_COLL_BLOCK_SIZE
LOG_DATA_COLL_BLOCK_COUNT
TRACE_DATA_COLL_ELEMENT_SIZE
TRACE_DATA_COLL_BLOCK_SIZE
TRACE_DATA_COLL_BLOCK_COUNT

SMARTS POSIX Tracing Parameters

SYSTEM_TRACE_LEVEL
TRACE_SYSTEM_INCLUDE
TRACE_SYSTEM_EXCLUDE
TRACE_FUNCTION_INCLUDE
TRACE_FUNCTION_EXCLUDE
TRACE_GROUP_INCLUDE
TRACE_GROUP_EXCLUDE
TRACE_OUTPUT_START_AFTER
TRACE_OUTPUT_STOP_AFTER
TRACE_CFUNC_PARMS
TRACE_CFUNC_PLIST

SMARTS POSIX Recovery Parameters

ABEND_RECOVERY
THREAD_ABEND_RECOVERY

SMARTS POSIX Statistics Collection Parameters

STATISTICS_INCLUDE
STATISTICS_EXCLUDE

1

STATISTICS_OPTION

SMARTS POSIX Miscellaneous Parameters

ASCII
CDI_DRIVER
ENVIRONMENT_VARIABLES
HOSTS_FILE
NETWORKS_FILE
PROTOCOLS_FILE
SERVICES_FILE
FLOATING_POINT
LOAD_DLL
LOG
MESSAGE_CASE
MOUNT_FS
PROCESS_HEAP_SIZE
SECURITY_INTERFACE
SYSTEM_ID
UNSUPPORTED_FUNCTION_LIST
VSE_PRINTER_SYSNO
ZAP_LIST

Standard CDI Definitions

Support for Console Processing (All Environments)
Support for IBM z/OS File Subsystem
Support for IBM VSE File Subsystem
Support for the Portable File System (z/OS)
Support for IBM OE TCP/IP Stack (z/OS)
Support for Connectivity Systems TCP/IP Stack (VSE)
Support for Inter Process Communications Pipes (All Environments)

SMARTS Server Configuration Parameters

ADABAS-BP
ADACALLS
ADADBID
ADALIMIT
ADAROLL
ADASVC
APPLYMOD
BUFFERPOOL
DUMPDSN
EOJ-VER
GLOBAL-MAXENQS

Configuring the SMARTS Environment2

Overview of Configuration Parameters

INIT-PGM
INSTALLATION
MAXENQS
MAXTASKS
MESSAGE-ID
PATCHAR
PROGRAMISD
RESIDENTPAGE
ROLL-BUFFERPOOL
SAVEPOOL
SAVEPOOL-ANY
SECSYS
SECSYS-APPL
SERVER
STARTUPPGM
TASK-GROUP
THREAD-GROUP
THSIZEABOVE
TIBTAB
TRACECLASS
TRACEOPTION
TRACETABLE
WORKLOAD-AVERAGE
WORKLOAD-MAXIMUM

3Configuring the SMARTS Environment

Overview of Configuration Parameters

4

2 SMARTS Configuration Sources

The configuration information for SMARTS consists of two parts:

■ the SMARTS POSIX layer parameters, which apply to all environments where SMARTS runs,
including the SMARTS server environment; and

■ the SMARTS server environment configuration parameters, which apply only to the server en-
vironment. With Com-plete, Com-plete is the SMARTS server environment and the Com-plete
sysparms are the SMARTS server environment configuration parameters.

All parameters must be stored in one or more text members, which must be defined in the startup
JCL under DD name SYSPARM (VSE: DLBL name SYSIPT).

The parameters defined in the SYSPARM/SYSIPT dataset are read and processed during initializ-
ation.

POSIX parameters are valid for SMARTS client and server environments. SMARTS server para-
meters are not valid in client environments and will cause the system to display the warning
message

Unknown keyword = xxxxxxxx

where xxxxxxxx is the keyword that was not recognized.

Which parameters need to be specified is product and installation dependent. Aminimum POSIX
layer configuration might look like this:

SYSTEM ID=Posix1
ASCII=NO
SYSTEM TRACE LEVEL=3
CDI DRIVER=('tcpip,PAAOSOCK')
CDI DRIVER=('file,PAAMFSIO,PAD=SPACE')

5

A minimum SMARTS server environment configuration might look like this:

WORKLOAD-AVERAGE=100
WORKLOAD-MAXIMUM=1000
DUMPDSN=<prefix>.&SYSNAME..&JOBNAME..D&YYMMDD..T&HHMMSS.
SERVER=(OPERATOR,TLINOPER) operator command reader
SERVER=(POSIX,PAENKERN) POSIX server definition

Configuring the SMARTS Environment6

SMARTS Configuration Sources

3 Sysparm Format

Sysparms must be entered according to established keyword coding conventions.

When read from SYSPARM/SYSIPT, each statement must begin in column one. A maximum of
80 characters per statement is allowed.

More than one sysparm is allowed per statement, but successive sysparms must be separated by
a comma, and the statement itself must be terminated by a blank. For example:

KEYWORD1=value1,KEYWORD2=value2...,KEYWORD9=value9

Continuation statements are allowed: a statement in parentheses may be wrapped after a comma.
For example:

KEYWORD=(value1, comment: this statement is continued on the next line
value2)

Multiple statements for the same keyword are permissible. Depending on the keyword, specifying
the same keyword again may

■ override a previous specification (example: SYSTEM_TRACE_LEVEL or PATCHAR); or
■ add another member to a list (example: CDI_DRIVER or RESIDENTPAGE).

When entered as PARM parameters in z/OS or VSE, standard PARM entry conventions apply.
Each keyword must be entered in its entirety in any given statement in the format:

KEYWORD=value

All keyword valuesmay be either fully spelled out or abbreviated. Software AG recommends that
you always use the full spelling. Abbreviationsmust consist of theminimumnumber of characters
required to uniquely differentiate a given keyword from any other acceptable keyword.

7

If a keyword option is omitted, the default value takes effect. If column one of any statement
contains an asterisk, that statement is treated as a comment.

For most keywords, the default value should normally be used.

Configuring the SMARTS Environment8

Sysparm Format

4 SMARTS POSIX Layer Configuration

■ SMARTS POSIX Log and Trace Parameters ... 10
■ SMARTS POSIX Tracing Parameters .. 12
■ SMARTS POSIX Recovery Parameters ... 20
■ SMARTS POSIX Statistics Collection Parameters .. 20
■ SMARTS POSIX Miscellaneous Parameters ... 22
■ Standard CDI Definitions .. 29

9

The parameters described in this section are POSIX parameters only.

The POSIX start-up options for the SMARTS environment are specified as keyword parameters
(so-called "sysparms"). These SYSPARM (z/OS) or SYSIPT (VSE) specifications must be entered
according to established keyword coding conventions. See Sysparm Format

The description of parameters is organized under the following headings:

SMARTS POSIX Log and Trace Parameters

Both the Logging and Tracing configurations are controlled by three parameters respectively.
They define the 'size' of the Data Collection structures. Data Collection is a SMARTS mechanism
for buffering output in dataspaces to reduce the perfomance implications of outputting large
volumes of Trace or Log records. If any of the following parameters are set to zero or not specified,
Data Collection will not occur and all data will be output directly to the DD names specified, with
possible performance degradation resulting.

LOG_DATA_COLL_ELEMENT_SIZE

DefaultPossible ValuesUseParameter

016 - 32767The size (in bytes) of a data element
within the log data collection block.

LOG_DATA_COLL_ELEMENT_SIZE

The element contains the data collection prefix area (DCPA) in the first 64 bytes; followed by
the data collected by the user.

LOG_DATA_COLL_BLOCK_SIZE

DefaultPossible ValuesUseParameter

1024LOG_DATA_COLL_ELEMENT_SIZE
- 32767

The size of a block
within the log data

LOG_DATA_COLL_BLOCK_SIZE

collection data
space.

The size of the block will determine how many elements it will contain. The more elements a
block contains, the less IO required to harden the output, as the data is written out by block.

Configuring the SMARTS Environment10

SMARTS POSIX Layer Configuration

LOG_DATA_COLL_BLOCK_COUNT

DefaultPossible ValuesUseParameter

81 - n whereNumber of blocks in the log data
collection data space.

LOG_DATA_COLL_BLOCK_COUNT

n * blocksize <= 2GB

The block count will determine how many blocks the data collection structure will contain.
This in turn determines how many concurrent threads the data collections mechanism can
process concurrently.

If statistics are being collected and the data is to be hardened (STATISTICS_INCLUDE=LOG), then
the element and block values will be overridden by the length of the longest statistics block,
if greater than the block value specified.

TRACE_DATA_COLL_ELEMENT_SIZE

DefaultPossible ValuesUseParameter

12816 - 32767The size (in bytes) of a data element
within the trace data collection block.

TRACE_DATA_COLL_ELEMENT_SIZE

The element contains
■ the data collection prefix area (DCPA) in the first 64 bytes; followed by
■ the data collected by the user.

TRACE_DATA_COLL_BLOCK_SIZE

DefaultPossible ValuesUseParameter

1024TRACE_DATA_COLL_ELEMENT_SIZE
- 32767

The size of a
block within

TRACE_DATA_COLL_BLOCK_SIZE

the trace data
collection
data space.

The size of the block will determine how may elements it will contain. The more elements a
block contains, the less IO required to harden the output, as the data is written out by block.

11Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

TRACE_DATA_COLL_BLOCK_COUNT

DefaultPossible ValuesUseParameter

81 - n
where
n * blocksize <= 2 GB

Number of blocks in the trace
data collection data space.

TRACE_DATA_COLL_BLOCK_COUNT

The block count will determine howmay blocks the data collection structurewill contain. This
in turn determines howmany concurrent threads the data collections mechanism can process
concurrently.

SMARTS POSIX Tracing Parameters

Tracing parameters are processed in the order in which they are entered. No effort is made to
process all includes before excludes or vice versa.

SYSTEM_TRACE_LEVEL

DefaultPossible ValuesUseParameter

11 - 5Granularity of tracing to be collected.SYSTEM_TRACE_LEVEL

Five (5) levels of tracing are possible; level 1 provides the least amount of tracing information,
and level 5 provides the maximum amount of tracing information.

Use the following guidelines to determine what to trace for a given trace level:

DescriptionLevel

The minimum amount of information needed to identify why the trace occurred and the event
in question. Only main events are traced. The trace information is formatted to fit on one print
line. Use this level to gather trace information with a minimum of overhead.

1

Same as level 1 except that all events are traced.2

Same as level 2 with additional trace records for each event that may include parameter lists and
single values including pointers. Control blocks are not included.

3

Same as level 3 with additional trace records for each event that may include control blocks or
parts of control blocks that are relevant to the trace event.

4

Same as level 4 with all relevant information related to the trace event: control blocks, buffers,
and any other data thatmay be useful. This levelwill have a severe impact on systemperformance.

5

When the APSTRCE identifier is provided in a SMARTS job stream, the trace data collection
mechanism attempts to open the file identified byAPSTRCE andwrite unformatted trace data
to it. The file is generally a blocked dataset with the ability to hold block-size/element-size re-
cords per block.

Configuring the SMARTS Environment12

SMARTS POSIX Layer Configuration

The element size determines the amount of data from a single request that the trace collection
mechanism can handle. If the element size is set to 128 bytes, for example, the collection
mechanism accepts a DCPA and up to 64 bytes of additional information. If the DCPALEN
field value is greater than 64 bytes in this case, anything after the 64th byte of information in
the additional data is not logged. Although the element size can be increased, the larger the
element size, the fewer the elements that will fit into the trace buffer and the greater the impact
on system performance.

When the identified APSTRCF is provided in the SMARTS job stream, the trace mechanism
formats the provided DCPA and any additional data in a generic format and writes the
formatted data to the dataset identified by APSTRCF. The trace logic must format and write
this data immediately; thus if large amounts of data are traced, system performance slows
significantly. Each additional piece of data to be written slows performance even more. You
can manage the situation by writing the code that builds requests to the trace subsystem so
that it properly restricts the amount of data that is traced.

TRACE_SYSTEM_INCLUDE

DefaultPossible ValuesUseParameter

nonesee tableSpecifies system trace options to include in trace.TRACE_SYSTEM_INCLUDE

One trace option may be specified per parameter. To activate more than one option, the para-
meter must be specified multiple times:

TRACE_SYSTEM_INCLUDE = CFUNCTION
TRACE_SYSTEM_INCLUDE = CONDVAR
TRACE_SYSTEM_INCLUDE = MUTEX

DescriptionValue

Trace entry to and exit from each C function in the application
running on SMARTS.

CFUNCTION

Trace all activity in the SMARTS system related to condition
variables.

CONDVAR

Trace all activity in the SMARTS system related to mutex.MUTEX

Trace all activity in the SMARTS system related to pthreads.PTHREADS

Trace generic sockets activity.INDEPENDENT_SOCKETS

Trace low level stack requests.STACK_DEPENDENT_SOCKETS

Trace all internal IO calls to SAGIOS (inactive for BS2000).CONTAINER_IO

Trace all of the above parameters.ALL

13Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

TRACE_SYSTEM_EXCLUDE

DefaultPossible ValuesUseParameter

nonesee tables and discussion for
TRACE_SYSTEM_INCLUDE

Specifies system trace
parameters to exclude in the
trace.

TRACE_SYSTEM_EXCLUDE

TRACE_FUNCTION_INCLUDE

DefaultPossible ValuesUseParameter

nonefunction nameInclude a specific function in the trace.TRACE_FUNCTION_INCLUDE

The function name is case-sensitive.

A list of functions with tracing switched on is produced unless the list containsmore than 50%
of all functions. In that case, a list of the functions with tracing switched off is produced.

TRACE_FUNCTION_EXCLUDE

DefaultPossible ValuesUseParameter

nonefunction nameExclude a specific function from the trace.TRACE_FUNCTION_EXCLUDE

The function name is case-sensitive.

TRACE_GROUP_INCLUDE

DefaultPossible ValuesUseParameter

nonesee table of groups | ALLInclude a specific group of functions
in the trace.

TRACE_GROUP_INCLUDE

DescriptionValue

Switch tracing on for all functions.ALL

TRACE_GROUP_EXCLUDE

DefaultPossible ValuesUseParameter

nonetable of groups | ALLExclude a specific group of functions from
the trace.

TRACE_GROUP_EXCLUDE

Configuring the SMARTS Environment14

SMARTS POSIX Layer Configuration

DescriptionValue

Switch tracing off for all functions.ALL

Table of Tracing Groups

FunctionsGroup

aio_cancel, aio_error, aio_fsync, aio_read, aio_return, aio_suspend, aio_write,
lio_listio

ASYNC_IO

dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey,
dbm_nextkey, dbm_open, dbm_store

DATABASE

grantpt, isatty, ptsname, unlockptDEVICE

__check, access, basename, chdir, chmod, chown, chroot, close, closedir, creat,
dirname, dlclose, dlerror, dlopen, dlsym, dup, dup2, fattach, fchdir, fchmod,

FILE_
DIRECTORY

fchown, fcntl, fdatasync, fdetach, fnmatch, fpathconf, fstat, fstatvfs, fsync, ftruncate,
ftw, getcwd, getdtablesize, getwd, glob, globfree, lchown, link, lockf, lseek, lstat,
mkdir, mkfifo,mknod,mkstemp,mktemp, nftw, open, opendir, pathconf, pwrite,
read, readdir, readdir_r, readlink, readv, realpath, remove, rename, rewinddir,
rmdir, seekdir, stat, statvfs, symlink, sync, telldir, truncate, umask, unlink, utime,
utimes, write, writev, flockfile, pread, tempnam, tmpfile, tmpnam, ttyname,
ttyname_r

execl, execle, execlp, execv, execve, execvp, fork, ftok, pipeINTER_
PROCESS_COMMS

__aett, __eatt, __xlt, apslog, apstrace, ENVINIT, ENVTERM, EXTATTCH,
EXTCDICHCK,EXTCDICNCL,EXTCDISLCT,EXTDEL,EXTDETCH,EXTFREEG,

INTERNAL

EXTFREET, EXTFSIOS,EXTGETG,EXTGETT, EXTLOAD,EXTMSG,EXTOPCMD,
EXTPOST, EXTPPCBG, EXTPPCBS, EXTTRACE, EXTWAIT, EXTWAITL, hlli,
SAGIOR

cfgetispeed, cfgetospeed, cfsetispeed, cfsetospeed, clearerr, ctermid, cuserid,
delenv, fclose, fdopen, feof, ferror, fflush, fgetc, fgetpos, fgets, fgetwc, fgetws,

IO

fileno, flockfile, fmtmsg, fopen, fprintf, fputc, fputs, fputwc, fputws, fread, freopen,
fscanf, fseek, fseeko, fsetpos, ftell, ftello, ftrylockfile, funlockfile, fwide, fwprintf,
fwrite, getc, getc_unlocked, getchar, getchar_unlocked, getmsg, getopt, getpass,
gets, getsubopt, getw, getwc, getwchar, ioctl, isastream, optarg, pclose, poll, popen,
pread, printf, putc, putc_unlocked, putchar, putchar_unlocked, putmsg, putpmsg,
puts, putw, rewind, scanf, select, setbuf, setvbuf, snprintf, sprintf, sscanf, stdin,
system, tcdrain, tcflow, tcflush, tcgetattr, tcgetsid, tcsendbreak, tcsetattr, ungetc,
vfprintf, vprintf, vsnprintf, vsprintf, putwc, putwchar, swprintf, swscanf, tempnam,
tmpfile, tmpnam, ttyname, ttyname_r, ungetwc, vfwprintf, vswprintf, vwprintf,
wprintf, wscanf

_longjmp, _setjmp, longjmp, setjmp, siglongjmp, sigsetjmpJUMP

localeconv, nl_langinfo, setlocaleLANGUAGE_
LOCALE

closelog, openlog, setlogmask, syslogLOGGING

abs, acos, acosh, asin, asinh, atan, atan2, atanh, cbrt, ceil, cos, cosh, div, drand48,
erand48, erf, erfc, exp, expm1, fabs, floor, fmod, frexp, gamma, hypot, ilogb,

MATH

15Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

FunctionsGroup

initstate, isnan, j0, j1, jn, jrand48, labs, lcong48, ldexp, ldiv, lgamma, log, log10,
log1p, logb, lrand48, modf, mrand48, nextafter, nrand48, pow, rand, rand_r,
random, remainder, rint, scalb, seed48, setstate, signgam, sin, sinh, sqrt, srand,
srand48, srandom, tan, tanh, y0, y1, yn

brk, bzero, calloc, free, getpagesize,malloc,memccpy,memchr,memcmp,memcpy,
memmove, memset, mlock, mlockall, mmap, mprotect, msync, munlock,

MEMORY

munlockall,munmap, realloc, sbrk, shm_open, shm_unlink, shmat, shmctl, shmdt,
shmget, valloc, bcmp, bcopy

catclose, catgets, catopen,mq_close,mq_getattr, mq_notify,mq_open,mq_receive,
mq_send,mq_setattr,mq_unlink,msgctl,msgget,msgrcv,msgsnd, perror, putmsg,
putpmsg

MESSAGES

__environ, __errno, _assert, clrenv, confstr, getenv, iconv, iconv_close, iconv_open,
putenv, qsort, swab, sysconf, ualarm, uname, usleep, wordexp, wordfree

MISCELLANEOUS

__h_errno, accept, bind, connect, endhostent, endnetent, endprotoent, endservent,
gethostbyaddr, gethostbyname, gethostent, gethostid, gethostname, getnetbyaddr,

NETWORK_
SOCKETS

getnetbyname, getnetent, getpeername, getprotobyname, getprotobynumber,
getprotoent, getservbyname, getservbyport, getservent, getsockname, getsockopt,
givesocket, htonl, htons, inet_addr, inet_lnaof, inet_makeaddr, inet_netof,
inet_network, inet_ntoa, listen, ntohl, ntohs, recv, recvfrom, recvmsg, send,
sendmsg, sendto, sethostent, setnetent, setprotoent, setservent, setsockopt,
shutdown, socket, socketpair, takesocket

_exit, _spawn, atexit, exit, getegid, geteuid, getgid, getgroups, getlogin, getlogin_r,
getpgid, getpgrp, getpid, getppid, getsid, getuid, nice, setegid, seteuid, setgid,

PROCESS

setpgid, setpgrp, setregid, setreuid, setsid, setuid, spawnl, spawnle, spawnlp,
spawnv, spawnve, spawnvp, tcgetpgrp, tcsetpgrp, ulimit, vfork, wait, waitid,
waitpid

pause, pthread_atfork, pthread_attr_destroy, pthread_attr_getdetachstate,
pthread_attr_getguardsize, pthread_attr_getinheritsched,

PTHREAD

pthread_attr_getschedparam, pthread_attr_getschedpolicy, pthread_attr_getscope,
pthread_attr_getstackaddr, pthread_attr_getstacksize, pthread_attr_init,
pthread_attr_setdetachstate, pthread_attr_setguardsize,
pthread_attr_setinheritsched, pthread_attr_setschedparam,
pthread_attr_setschedpolicy, pthread_attr_setscope, pthread_attr_setstackaddr,
pthread_attr_setstacksize, pthread_cancel, pthread_cleanup_pop,
pthread_cleanup_push, pthread_cond_broadcast, pthread_cond_destroy,
pthread_cond_init, pthread_cond_signal, pthread_cond_timedwait,
pthread_cond_wait, pthread_condattr_destroy, pthread_condattr_getpshared,
pthread_condattr_init, pthread_condattr_setpshared, pthread_create,
pthread_detach, pthread_equal, pthread_exit, pthread_getconcurrency,
pthread_getschedparam, pthread_getspecific, pthread_join, pthread_key_create,
pthread_key_delete, pthread_mutex_destroy, pthread_mutex_getprioceiling,
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_setprioceiling,
pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutexattr_destroy,
pthread_mutexattr_getprioceiling, pthread_mutexattr_getprotocol,
pthread_mutexattr_getpshared, pthread_mutexattr_gettype,
pthread_mutexattr_init, pthread_mutexattr_setprioceiling,

Configuring the SMARTS Environment16

SMARTS POSIX Layer Configuration

FunctionsGroup

pthread_mutexattr_setprotocol, pthread_mutexattr_setpshared,
pthread_mutexattr_settype, pthread_once, pthread_rwlock_destroy,
pthread_rwlock_init, pthread_rwlock_rdlock, pthread_rwlock_tryrdlock,
pthread_rwlock_trywrlock, pthread_rwlock_unlock, pthread_rwlock_wrlock,
pthread_rwlockattr_destroy, pthread_rwlockattr_getpshared,
pthread_rwlockattr_init, pthread_rwlockattr_setpshared, pthread_self,
pthread_setcancelstate, pthread_setcanceltype, pthread_setconcurrency,
pthread_setschedparam, pthread_setspecific, pthread_testcancel, pthread_kill,
pthread_sigmask

endgrent, endpwent, endutxent, getgrent, getgrgid, getgrgid_r, getgrnam,
getgrnam_r, getpmsg, getpwent, getpwnam, getpwnam_r, getpwuid, getpwuid_r,
getutxent, getutxid, getutxline, pututxline, setgrent, setpwent, setutxent, ttyslot

PWD_GRP_ACC

advance, compile, loc1, locs, re_comp, re_exec, regcmp, regcomp, regerror, regex,
regexec, regexp, regfree, step

REGULAR_
EXPRESSIONS

getpriority, getrlimit, getrusage, setpriority, setrlimitRESOURCES

sched_get_priority_max, sched_get_priority_min, sched_getparam,
sched_getscheduler, sched_rr_get_interval, sched_setparam, sched_setscheduler,
sched_yield

SCHEDULING

bsearch, hcreate, hdestroy, hsearch, insque, lfind, lsearch, remque, tdelete, tfind,
tsearch, twalk

SEARCH

sem_close, sem_destroy, sem_getvalue, sem_init, sem_open, sem_post,
sem_trywait, sem_unlink, sem_wait, semctl, semget, semop

SEMAPHORE

abort, alarm, bsd_signal, kill, killpg, pthread_kill, pthread_sigmask, raise, sigaction,
sigaddset, sigaltstack, sigdelset, sigemptyset, sigfillset, sighold, sigignore,

SIGNAL

siginterrupt, sigismember, signal, sigpause, sigpending, sigprocmask, sigqueue,
sigrelse, sigset, sigstack, sigsuspend, sigtimedwait, sigwait, sigwaitinfo

a64l, atof, atoi, atol, bcmp, bcopy, crypt, ecvt, encrypt, fcvt, ffs, gcvt, index, l64a,
rindex, setkey, strcasecmp, strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup,

STRING

strerror, strfmon, strftime, strlen, strncasecmp, strncat, strncmp, strncpy, strpbrk,
strrchr, strspn, strstr, strtod, strtok, strtok_r, strtol, strtoul, strxfrm, -wcsftime,
wcscat, wcschr, wcscmp, wcscoll, wcscpy, wcscspn, wcslen, wcsncat, wcsncmp,
wcsncpy, wcspbrk, wcsrchr, wcsrtombs, wcsspn, wcsstr, wcstod, wcstok, wcstol,
wcstombs, wcstoul, wcswcs, wcswidth, wcsxfrm, wcsftime

asctime, asctime_r, clock, clock_getres, clock_gettime, clock_settime, ctime, ctime_r,
daylight, difftime, ftime, getdate, getitimer, gettimeofday, gmtime, gmtime_r,

TIME

localtime, localtime_r, mktime, nanosleep, setitimer, sleep, strptime, time,
timer_delete, timer_getoverrun, timer_gettime, timer_settime, times, tzname,
tzset, timer_create, strftime

getcontext, makecontext, setcontext, swapcontextUSERCONTEXT

btowc, iswalnum, iswalpha, iswcntrl, iswctype, iswdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, iswxdigit, mblen, mbrlen, mbrtowc,

WIDE_CHAR

mbsinit, mbsrtowcs, mbstowcs, mbtowc, putwc, putwchar, swprintf, swscanf,
towctrans, towlower, towupper, wcrtomb, wctob, wctomb, wctrans, wctype,
wcwidth, wmemchr, wmemcmp, wmemcpy, wmemmove, wmemset, wcscat,

17Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

FunctionsGroup

wcschr, wcscmp, wcscoll, wcscpy, wcscspn, wcslen, wcsncat, wcsncmp, wcsncpy,
wcspbrk, wcsrchr, wcsrtombs, wcsspn, wcsftime, wcsstr, wcstod, wcstok, wcstol,
wcstombs, wcstoul, wcswcs, wcswidth, wcsxfrm

t_accept, t_alloc, t_bind, t_close, t_connect, t_error, t_free, t_getinfo, t_getprotaddr,
t_getstate, t_listen, t_look, t_open, t_optmgmt, t_rcv, t_rcvconnect, t_rcvdis,

XTI

t_rcvrel, t_rcvreldata, t_rcvudata, t_rcvuderr, t_rcvv, t_rcvvudata, t_snd, t_snddis,
t_sndrel, t_sndreldata, t_sndudata, t_sndv, t_sndvudata, t_strerror, t_sync,
t_sysconf, t_unbind

TRACE_OUTPUT_START_AFTER

DefaultPossible ValuesUseParameter

noneAny numeric
value

Start putting out trace data, after the
specified number of trace records have

TRACE_OUTPUT_START_AFTER

been issued. This can be used as a
mechanism for reducing the number of
records output if a large and unwieldy
output is anticipated.

TRACE_OUTPUT_STOP_AFTER

DefaultPossible ValuesUseParameter

noneAny numeric
value

Stop putting out trace data, after the
specified number of trace records have been

TRACE_OUTPUT_STOP_AFTER

issued. This can be used as amechanism for
reducing the number of records output if a
large and unwieldy output is anticipated.

TRACE_CFUNC_PLIST

DefaultPossible ValuesUseParameter

NOYES ¦ NOSpecify whether C function parameter list tracing is
to be active or not.

TRACE_CFUNC_PLIST

TRACE_CFUNC_PARMS

DefaultPossible
Values

UseParameter

noneSee tableSpecify the formats of parameters of a paticular C
function to be traced. One invocation of this keyword

TRACE_CFUNC_PARMS

is required for every different C function to be traced.
The number of parameters to be traced is limited to 8
and only the 1st 25 bytes of the C functions name will
be traced, so programmers should try to ensure that

Configuring the SMARTS Environment18

SMARTS POSIX Layer Configuration

DefaultPossible
Values

UseParameter

function names are unique within those 25 bytes, to
avoid ambiguous trace output.

Table of C Function Parameter Tracing Options
The values for this keyword are specified as follows:

TRACE_CFUNC_PARMS=('sample_function_name',p1,p2,p3,...,p8,RET=pr)

where p1, p2 ... etc represent the formats of the parameters passed and pr represents the format
of the returned value. The possible values for these variables and their meanings are listed in
the table below: Variable Meaning C Character type data. S Short Integer type data. I Integer
type data. L Long Integer type data. G Long Long type data. F Floating Point type data. D
Double Precision Floating Point type data. U Long Double Precision Floating Point type data.
P Pointer type data. V Void Pointer type data. A Variable (unknown)

MeaningVariable

Character type data.C

Short Integer type data.S

Integer type data.I

Long Integer type data.L

Long Long type data.G

Floating Point type data.F

Double Precision Floating Point type dataD

Long Double Precision Floating Point type data.U

Pointer type data.P

Void Pointer type data.V

Variable (unknown)A

So the example given above may have been coded as:

TRACE_CFUNC_PARMS=(“function_passing_2ints_and_a_pointer”,I,I,V,RET=I)

19Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

SMARTS POSIX Recovery Parameters

In general, the recovery parameters are always set to YES so that threads can be cancelled when
SMARTS terminates. When the recovery parameters are set to NO, SMARTS does not terminate
properly.

Use the NO value only for debugging purposes when requested to do so by your Software AG
technical support representative.

ABEND_RECOVERY

Important: Use this parameter only when requested to do so by your Software AG
technical support representative.

DefaultPossible ValuesUseParameter

YESYES | NOWhether a recovery environment is established for a logical process
in the SMARTS environment.

ABEND_
RECOVERY

NOmeans that SMARTS does not recover or cleanup when an ABEND occurs for a process.

THREAD_ABEND_RECOVERY

Important: Use this parameter only when requested to do so by your Software AG
technical support representative.

DefaultPossible ValuesUseParameter

YESYES | NOWhether a recovery environment is established
for a pthread created in the SMARTS
environment.

THREAD_ABEND_RECOVERY

NOmeans that SMARTS does not recover or cleanup when an ABEND occurs in a pthread.

SMARTS POSIX Statistics Collection Parameters

Statistics collection parameters are processed in the order in which they are entered, the last spe-
cification encountered takes precedence.

Configuring the SMARTS Environment20

SMARTS POSIX Layer Configuration

STATISTICS_INCLUDE

DefaultPossible ValuesUseParameter

NoneSee tableSpecifies resource to include in statistics collection.STATISTICS_INCLUDE

One resource may be specified per parameter. To activate more than one resource, the para-
meter must be specified multiple times:

STATISTICS_INCLUDE = CFUNCTION
STATISTICS_INCLUDE = CONDVAR
STATISTICS_INCLUDE = MUTEX

Default number of blocks allocatedDescriptionValue

100Collect statistics for C and C++ functions.CFUNCTION

100Collect statistics for POSIX functions.PFUNCTION

20Collect statistics for Mutex processing.MUTEX

20Collect statistics for Condition Variable processing.CONDVAR

10Collect statistics about file usage.FILE

10Collect statistics about sockets usage.SOCKET

1Collect statistics about storage usage.STORAGE

N/ACollect all statistics.ALL

A number may be included on the STATISTICS_INCLUDE statement to override the default
number of blocks to be allocated for the given resource:

STATISTICS_INCLUDE = CFUNCTION(200)
STATISTICS_INCLUDE = CONDVAR(10)

This feature cannot be usedwhen STATISTICS_INCLUDE=ALL is specified. Asmentioned above,
the size of the SMARTS log file block/element size is determined by the storage required by
the statistics blocks, which is controlled by the number of blocks allocated. The maximum
length that can be specified for the log file is 32K and data will be lost if the maximum is ex-
ceeded. Use the override facility to reduce this size.

21Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

STATISTICS_EXCLUDE

DefaultPossible ValuesUseParameter

NoneSee tables and discussion for
STATISTICS_INCLUDE

Specifies resource to exclude from
statistics collection.

STATISTICS_EXCLUDE

STATISTICS_OPTION

DefaultPossible ValuesUseParameter

NoneSee tableSpecifies how the data will be processed when flushed
from the internal buffers.

STATISTICS_OPTION

The data will be hardened using the SMARTS logging facility.LOG

The data will be formatted and written to the APSSTAF dataset.FORMAT

Both options may be specified, but on separate statements.

SMARTS POSIX Miscellaneous Parameters

ASCII

DefaultPossible ValuesUseParameter

NOYES | NO | (YES,tttttttt) |
(NO,tttttttt)

Whether ASCII runtime conversion is on and
whether a translation table is to be used..

ASCII

SMARTSexecutablesmaybe compiled asASCII or EBCDICexecutables.ASCIImaybe required,
for example, in cases where ASCII dependencies are built into the processing algorithm(s).

tttttttt
translation table name e.g. CP1145. Applied translation tables are:
■ CP1145 (Spanish)
■ CP871 (Icelandic)
■ CP273 (German)

TheASCII parameter valuemustmatch theway the executableswere built. ASCII and EBCDIC
executables may not be intermixed.

C_STACK_SIZE

Important: Use this parameter only when requested to do so by your Software AG tech-
nical support representative.

Configuring the SMARTS Environment22

SMARTS POSIX Layer Configuration

DefaultPossible ValuesUseParameter

200K0 - 4095MPreallocates C stack storage for internal use.C_STACK_SIZE

Note: The value may be indicated in bytes, in kilobytes with a “K” modifier, or in
megabytes with an “M” modifier; for example, 320,000 bytes may also be specified as
320K or 32M. The C_STACK_SIZE parameter is used to preallocate a storage area for in-
ternal use.

CDI_DRIVER

DefaultPossible ValuesUseParameter

nonesee format belowDefines CDI protocols to SMARTS and specifies the modules
whilch implement the required functionality.

CDI_DRIVER

CDI driver parameters:

CDI_DRIVER=('CDIparm1')
CDI_DRIVER=('CDIparm2')
CDI_DRIVER=('CDIparm3')

A separate CDI_DRIVERparameter is required for each CDI driver youwant to use. The order
of CDI drivers within the parameter specification does not matter. See the section Standard
CDI Definitions for more information.

Each CDI protocol driver definition takes the following form:

protocol,module,key1=value1

- where

is the name of the CDI protocol being definedprotocol

is the name of the load module implementing this CDI protocol. This load module
must be accessible to the POSIX server environment.

module

are keyword/value pairs specific to the CDI protocol driver.key1..n/value1..n

For information about specifying the keyword/value pairs, refer to the implementation docu-
mentation for the relevant CDI protocol.

A default driver will always be loaded for the 'FILE' protocol. The driver loaded will be the
default native file I/O driver for the relevant hardware platform

23Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

ENVIRONMENT_VARIABLES

DefaultPossible ValuesUseParameter

no global
environment
variables

file-name (see
format below)

Names the file containing
global environment variable
definitions for the POSIX
server.

ENVIRONMENT_VARIABLES

The file name uses URL-like notation as follows:
■ z/OS: If the file is in the PDS A.B.C member (MEMBER), specify it as

/a/b/c/member.ext

(note that .ext is ignored)
■ VSE: If the file is Library "A", Sublibrary "B", Member "C", Member Type "D", specify it as:

/a/b/c.d

■ All environments: If the file is a sequential file called X.Y.Z, specify it as

/x/y/z/

FLOATING_POINT

DefaultPossible ValuesUseParameter

Depends on support
available on hardware
platform

IEEE|HFPSpecify whether the SMARTS
environment should use the binary
floating point format internally (IEEE)

FLOATING_POINT

or the hexadecimal floating point format
(HFP)

If the hardware platformwhere SMARTS is running does not support the required instruction
set for binary floating point operations (IEEE), the FLOATING_POINTparameter valuewill default
toHFP. The default value should only be overridden if this is explicitly instructed in a product's
installation notes.

Caution: Mixing applicationswith IEEE andHFP floating point arithmetic causes unpre-
dictable results from floating point operations.

Configuring the SMARTS Environment24

SMARTS POSIX Layer Configuration

HOSTS_FILE

DefaultPossible ValuesUseParameter

No host name tableFile nameNames the file containing the TCP/IP host name and
address table.

HOSTS_FILE

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

LOAD_DLL

DefaultPossible ValuesUseParameter

none1-8 character DLL namePreloadsDLL executables in the batch environment only.LOAD_DLL

TheDLL executable name is available from the execution environment; for example, STEPLIB.

LOG

DefaultPossible ValuesUseParameter

LOGLOG | OPERATORWhether messages written to APSLOG are also written to the
console.

LOG

When OPERATOR is specified, all messages are written to both APSLOG and the operator
console.

MESSAGE_CASE

DefaultPossible ValuesUseParameter

MIXEDUPPER | MIXEDWhether messages are translated to all uppercase
characters before being sent to the console.

MESSAGE_CASE

Normally, SMARTSmessages arewritten as a combination of upper- and lowercase characters.

MOUNT_FS

DefaultPossible ValuesUseParameter

nonesee textSpecifies themapping of file names (for example, on open function
calls) to the underlying physical file container or file name.

MOUNT_FS

SMARTS files can be processed either directly to the underlying file system of the native oper-
ating system or to an intermediate level known as the portable file system (PFS). Access to the
files within a PFS is transparent using the standard POSIX APIs.

Multiple PFS files are permitted as long as each file has a different protocol name and a different
container. When using multiple PFS container files, it is necessary to indicate which physical
files are to contain which logical files. The MOUNT_FS parameter is used in conjunction with

25Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

the CDI_DRIVER parameter specifying the one or more PAANPFS drivers. See the section
Standard CDI Definitions for more information.

The MOUNT_FS parameter has two subparameters: the first subparameter maps to the name
of the PFS driver in the CDI_DRIVER parameter and the second subparameter maps to the
logical file name as specified by the application program POSIX calls.

For example:

CDI_DRIVER=('PFS1,PAANPFS,CONTAINER=CIO://DD:PFS01')
CDI_DRIVER=('PFS2,PAANPFS,CONTAINER=CIO://DD:PFS02')

MOUNT_FS=('PFS1://','/usr/')
MOUNT_FS=('PFS2://','/misc/')

The above parameters identify two PFS file systems: /usr files map to the physical dataset
specified by PFS1 and /misc files map to the physical dataset specified by PFS2.

To refer to (open) a file in PFS01, issue

f1=open("/usr/data",...)

Any other pathnames are assumed to map to the default protocol file://, which is the native
operating system file system.

MOUNT_FS is not limited to PFS filesystems. If you set up the POSIX parameters as

CDI_DRIVER=('file,PAAMFSIO') Native z/OS File I/O
MOUNT_FS=('file://','/fs/')

- and then issue

open("/fs/saguk/kxo/reg4/", ...)

- you are referring to sequential dataset SAGUK.KXO.REG4 in the native filesystem.

Configuring the SMARTS Environment26

SMARTS POSIX Layer Configuration

NETWORKS_FILE

DefaultPossible ValuesUseParameter

No network name tableFile nameNames the file containing the TCP/IP
network name table.

NETWORKS_FILE

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

PROCESS_HEAP_SIZE

DefaultPossible ValuesUseParameter

1008Preallocates storage for internal use.PROCESS_HEAP_SIZE

Note: The value may be indicated in bytes, in kilobytes with a "K" modifier, or in
megabytes with an "M" modifier; for example, 320,000 bytes may also be specified as
320K or 32M.

The PROCESS_HEAP_SIZE parameter is used to preallocate a storage area for internal use.

PROTOCOLS_FILE

DefaultPossible ValuesUseParameter

No protocol name tableFile nameNames the file containing the TCP/IP
protocol name table.

PROTOCOLS_FILE

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

SECURITY_INTERFACE

DefaultPossible ValuesUseParameter

DEFAULTDEFAULT | ESSG | EXITIdentifies the security subsystem to
use.

SECURITY_INTERFACE

DescriptionValue

Default security actions are taken and no external security system is consulted. User and
group database files must be provided in files "$SAG_RTS_ETC/passwd" and

DEFAULT

"$SAG_RTS_ETC/group". The files are similar to UNIX-based passwd and group files in
structure.

Set security by user exit.EXIT

27Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

SERVICES_FILE

DefaultPossible ValuesUseParameter

No services name tableFile nameNames the file containing the TCP/IP services
name table.

SERVICES_FILE

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

SYSTEM_ID

DefaultPossible ValuesUseParameter

SysName1-8 character stringAname that uniquely identifies the POSIX server instance.SYSTEM_ID

The specified string is included in all messages issued to the operator during the execution of
the POSIX server (excluding some start-up and termination messages). It may also be used in
the future by the POSIX server system to uniquely identify itself within a machine.

UNSUPPORTED_FUNCTION_LIST

Important: Use this parameter only when requested to do so by your Software AG
technical support representative.

DefaultPossible ValuesUseParameter

NOYES | NOWhether a list of unsupported functions is written during
startup.

UNSUPPORTED_
FUNCTION_LIST

VSE_PRINTER_SYSNO

DefaultPossible ValuesUseParameter

FEE000-FFFOptional. Specifies the "cuu" of the VSE printer to be
assigned for SYSLST.

VSE_PRINTER_SYSNO

ZAP_LIST

Important: Use this parameter only when requested to do so by your Software AG
technical support representative.

Configuring the SMARTS Environment28

SMARTS POSIX Layer Configuration

DefaultPossible ValuesUseParameter

NOYES | NOWhether a list of applied ZAPs is written during startup.ZAP_LIST

When YES is specified, a message is written to the log for each ZAP that has been correctly
applied.

Standard CDI Definitions

SMARTS provides a number of standard definitions for communication driver interfaces (CDIs)
to cover a standard set of functionality in each given environment.

Support for Console Processing (All Environments)
Support for console processing may be activated in any SMARTS environment using this CDI
driver.

This driver may be activated using the following CDI driver definition:

CDI_DRIVER=('CONSOLE,PAANCNIO')

There are currently no parameters for this CDI driver.

Support for IBM z/OS File Subsystem
Support for IBM z/OS File Subsystem may be activated for z/OS only using this CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=('file,PAAMFSIO,BLKSIZE=<nnnnn>,LRECL=<nnnnn>,
RECFM=<fm>,VOLSER=<vvvvvv>,PRIMARY=<nnnn>,SECONDARY=<nnnn>,
DIRECTORY=<nnnn>,PAD=<xxxxx>')

The following table describes the use of the configuration parameters this driver supports:

DefaultPossible ValuesUseParameter

4096user-configurableOptional. Specifies the default block size to be used for a
dataset created by this driver, if it is otherwise unspecified.

BLKSIZE

4092user-configurableOptional. Specifies the default logical record length to be
used for a dataset created by this driver, if it is otherwise
unspecified.

LRECL

VBF, FB, FBA, U, V,
VB, VBA

Optional. Specifies the default record format to be used
for a dataset created by this driver, if it is otherwise
unspecified.

RECFM

29Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

DefaultPossible ValuesUseParameter

Site
specific

user-configurableOptional. Specifies the volume serial number of the default
disk pack onwhich to place a dataset created by this driver,
if it is otherwise unspecified.

VOLSER

1user-configurableOptional. Specifies the default primary quantity value, in
cylinders, to be allocated for a dataset created by this

PRIMARY

driver, if it is otherwise unspecified. Refer to IBM
documentation on the DD statement SPACE parameter
for more details on the primary quantity value.

1user-configurableOptional. Specifies the default secondary quantity value,
in cylinders, to be used for a dataset created by this driver,

SECONDARY

if it is otherwise unspecified. Refer to IBM documentation
on the DD statement SPACE parameter for more details
on the secondary quantity value.

10user-configurableOptional. Specifies the default number of directory blocks
to be allocated for a PDS created by this driver, if it is

DIRECTORY

otherwise unspecified. Refer to IBMdocumentation on the
DD statement SPACE parameter for more details on the
directory value.

NULLSPACE, NULLOptional. In the case ofwriting to a dataset of Fixed record
length, it may be necessary to pad out records with a

PAD

padding character. This parameter may be used to specify
the padding character.

Support for IBM VSE File Subsystem
Support for the IBM VSE file subsystem may be activated for VSE only using this CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=('FILE,PAVVFSIO', BLKSIZE=<nnnnn>,LRECL=<nnnnn>,
RECFM=<fm>,PAD=<xxxxx>)

The following table describes the use of the single configuration parameter this driver supports:

DefaultPossible ValuesUseParameter

3200user-configurableOptional. Specifies the default block size to be used for a
dataset created by this driver, if it is otherwise unspecified.

BLKSIZE

80user-configurableOptional. Specifies the default logical record length to be
used for a dataset created by this driver, if it is otherwise
unspecified

LRECL

FBF, FB, FBA, U, V, VB,
VBA

Optional. Specifies the default record format to be used for
a dataset created by this driver, if it is otherwise unspecified.

RECFM

Configuring the SMARTS Environment30

SMARTS POSIX Layer Configuration

DefaultPossible ValuesUseParameter

NULLSPACE, NULLOptional. In the case of writing to a dataset of Fixed record
length, itmay be necessary to pad out recordswith a padding

PAD

character. This parametermay be used to specify the padding
character.

Support for FSC BS2000 File Subsystem
Support for Fujitsu Siemens Computers BS2000 File Subsystem may be activated for BS2000
using one of two CDI drivers.

For the main file subsystem use:

CDI_DRIVER=('file,PA2MFSIO')

For the shared file subsystem use:

CDI_DRIVER=('file,PA2SFIO,SIOTSK=<xxxxx>’)

SIOTSK is a mandatory field for the shared file IO task and needs to be assigned a user-config-
urable name.

Support for the Portable File System (z/OS)
Access to the files within a portable file system (PFS) is transparent using the standard POSIX
APIs after it has been properly implemented.

Define the CIO CDI driver to support PFS:

CDI_DRIVER=('CIO,PAANCIO')

Multiple PFS files are permitted as long as each file has a different protocol name and a different
container.

Allocate a container to store each PFS:

LRECL=BLOCKSIZE=4096

Completely initialize the container to contain x'00's.

Reference each container by a DDNAME in the JCL.

Establish a CDI driver for each container/PFS. For example:

CDI_DRIVER=('PFS1,PAANPFS,CACHESIZE=2000,LRECL=4096,CONTAINER=CIO://DD:PFS01')
CDI_DRIVER=('PFS2,PAANPFS,CACHESIZE=4000,LRECL=32768,CONTAINER=CIO://DD:PFS02')

31Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

Note that both drivers in the example specify the same module (PAANPFS) but different
protocol names. The protocol name (PFSnn in the example) is a user-defined name up to 8
characters in length.

CACHESIZE

The CACHESIZE subparameter is used to specify the number of records (4k blocks) that will be
cached on platformswhose underlying IO is based on the Container IOmodel. (All supported
platforms except BS2000). There is an overhead associated with specifying this parameter and
so it should only be used on containers forwhich a large volume of IO is anticipated. Generally
the bigger the cachesize, the greater the reduction in physical IOs, but as this value is increased,
the law of diminishing returns will apply, so users will have to experiment to determine the
appropriate value for specific containers in a particular application environment.

LRECL

The LRECL subparameter is used to define the logical record size the application will see when
using this container. It is possible to greatly reduce the number of IOs to a device by specifying
this value to be equal to the size at which the application typically does its IO at. e.g. if an ap-
plication routinely issues 8k IOs to a particular container, the number of physical IOs can be
almost halved by specifying an LRECL subparameter of 8192 for the CDI driver defining the
protocol for that container. The LRECL subparameter is actioned when the container is first
initialized, somodifying the value after that point will have no effect. The value specifiedmust
be an integral multiple of the physical container LRECL (4k).

Map each container/PFS to a 'file system'. That is, identify the mapping files, directories, and
subdirectories to the containers/PFSs. For example:

MOUNT_FS=('PFS1://','/registry/')
MOUNT_FS=('PFS2://','/tamino/')

In the above example, all pathnames beginning in /registry/ are mapped to the container/PFS
defined by the protocol PFS1 and all pathnames beginning in /tamino/ are mapped to the
container/PFS defined by the protocol PFS2. All other pathnames are mapped to the default
protocol, which is

file://

- that is, the standard z/OS file I/O.

Support for the Portable File System (VSE)
The PFS options for VSE are the same as for z/OS. Please also document that PFS uses a default
LRECL etc. of 32K specifically for TAMINO. Other applications should reduce the LRECL to
4096 or 8192 as this saves dead space in the PFSwhen short blocks are beingwritten andALSO
save storage at run-time.

Configuring the SMARTS Environment32

SMARTS POSIX Layer Configuration

Support for IBM OE TCP/IP Stack (z/OS)
Support for IBM OpenEdition TCP/IP may be activated for z/OS only using this CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=('TCPIP,PAAOSOCK)

Notes:

1. The userid where the job is running must have an OE segment defined.

Support for Connectivity Systems TCP/IP Stack (VSE)
Support for the Connectivity Systems TCP/IP stack may be activated for VSE only using this
CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=('TCPIP,PAACSOCK,BUFSZ=n,MINQ=n,MAXQ=n')

The following table describes the configuration parameters this driver supports:

DefaultPossible ValuesUseParameter

1492629 to 65535Optional. Specifies the length of the send and receive buffers.BUFSZ

53 to 32767Optional. Specifies the minimum queue length (or backlog) that may
be specified by an application in a listen() call.

MINQ

303 to 32767Optional. Specifies the maximum queue length (or backlog) that may
be specified by an application in a listen() call.

MAXQ

Note: If the application specifies a value outside the above range an error does not occur.
Instead, the appropriate minimum or maximum value is used.

The minimum value for BUFSZ is derived from the length of the status information received
from the CSI stack and may change with future releases. The above value relates to Version 1
Release 4.0C.

Send and receive buffers will be allocated for each potential connection in a listening socket
queue. Using the MAXQ could reduce the storage usage.

Support for Inter Process Communications Pipes (All Environments)
Support for pipes and named pipes may be activated for all environments using this CDI
driver.

The driver may be activated using the following CDI driver definition:

33Configuring the SMARTS Environment

SMARTS POSIX Layer Configuration

CDI_DRIVER=('pipe,PAANPIO,BLKSIZE=<nnnn>,NBLKS=<bbbb>')

The following table describes the configuration parameters this driver supports:

DefaultPossible ValuesUseParameter

4096User-configurableOptional. Defines the internal block size used by the driver in
bytes. This is the size of each storage buffer allocated by the driver

BLKSIZE

for storing pipe data in. The buffers are chained up to the
maximum of <bbbb> entries.

128User-configurableOptional. Defines the maximum number of storage buffers to be
allocated for any open pipe descriptor.

LIMIT

Under normal circumstances, no configuration parameter should be required. Use these only
when directed to do so by Software AG's support personnel.

Notes:

1. Named pipes can only be supported when associated with a mounted PFS container. They
are not supported on native file systems.

2. Normal (unnamed) pipes are not dependent on any file system.

Configuring the SMARTS Environment34

SMARTS POSIX Layer Configuration

5 Configuration of the SMARTS Server Environment

■ SMARTS Server Configuration Parameters .. 37

35

Start-up parameters are available to customize the execution of the SMARTS server environment.
The start-up options, whether specified as PARM parameters or entered as statements read from
SYSPARM (z/OS) or SYSIPT (VSE), are specified as keyword parameters (so-called "sysparms")
andmust be entered according to established keyword coding conventions. See Sysparm Format.

The sysparms are interpreted and processed by the PARM-processor module of the SMARTS
server environment when the server environment is initialized.

Note: For z/OS and VSE systems, SMARTS server sysparms may be overridden during the
initialization of the environment without updating the member in the partitioned dataset.
Formore information about specifying or overriding sysparmdata, see Installation on z/OS
and Installation on VSE.

For a standard z/OS installation, Software AG recommends that you define the size of the install-
ation by setting the region size and one or both of the parameters

WORKLOAD-AVERAGE
WORKLOAD-MAXIMUM

and omit the configuration of the following parameters to SMARTS:

ADABAS-BP
BUFFERPOOL
ROLL-BUFFERPOOL
SAVEPOOL
SAVEPOOL-ANY
TASK-GROUP
TIBTAB
THREAD-GROUP

If one or more of these sysparms are set, these settings will be used.

The following parameters may be specified in a SMARTS server environment only; otherwise, the
following warning message will be issued:

Unknown keyword = xxxxxxxx

where xxxxxxxx is the keyword that was not recognized.

Configuring the SMARTS Environment36

Configuration of the SMARTS Server Environment

SMARTS Server Configuration Parameters

ADABAS-BP

DefaultPossible ValuesUseSysparm

The number of subpools to allocate will be
decided internally. The size of the elements

see textUsed to define the
ADABAS buffer pool.

ADABAS-BP

depends on the definitions made to create
ADALCO .

This buffer pool is used for ADABAS interface work areas, which are acquired outside of the
thread but in the key of the thread. This parameter enables users to determine the key(s) for
which buffer subpools are built and the number of buffers in each subpool.

The format for the value is as follows:

ADABAS-BP=((no,key),(no,key) . . . (no,key))

- where

is the number of elements to allocate in the buffer subpool for this key. This must be greater than
1 and less than or equal to 8192.

no

is the storage protect key in which the buffer subpool will be allocated. This may be any number
between 1 and 15. For z/OS, FACOM, and Hitachi systems, only keys 8 to 15 should be specified
here.

key

By default, a subpool is built for keys 8 to 15. 8192 bytes are allocated for each subpool and
the number of areas that can exist in each subpool is dependent on the size of the various
ADALNK areas required.

Notes:

1. If an error is encountered in an ADABAS-BP system parameter, the whole line of code is
ignored. Therefore, if there is no following ADABAS-BP specification in the system para-
meters, the defaults are in effect.

2. A subsequent specification of the ADABAS-BP system parameter totally overwrites a pre-
vious ADABAS-BP specification. Therefore, if the second specification is incorrect, the de-
faults again apply even if the first ADABAS-BP specification is correct.

Example:

ADABAS-BP=((20,9),(50,12),(100,8))

37Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

An ADABAS buffer pool is built with three subpools:
■ the first is built in key 9 and has 20 elements;
■ the second is built in key C(12) and has 50 elements; and
■ the third is built in key 8 and has 100 elements.

ADACALLS

DefaultPossible ValuesUseSysparm

10see textThe maximum number of incomplete ADABAS calls from an
application before the SMARTS/ ADABAS interface rolls out the
application.

ADACALLS

Note: This parameter is ignored if ADAROLL=NO is specified.

The format for the value is as follows:

ADACALLS={ n | (dbid,n) }

- where

is an integer between 1 and 32767.n

is an ADABAS database ID. If 'dbid' is specified, ADACALLS applies only to calls directed to
the specified database.

dbid

ADADBID

RequiredDefaultPossible ValuesUseSysparm

nonone1-255The default database ID for ADABAS.ADADBID

The value specified forADADBID is used if the application programdoes not supply a specific
database ID in the ADABAS control block. Refer to the ADABAS Operations Manual for a de-
scription of the use of the database ID.

ADALIMIT

DefaultPossible ValuesUseSysparm

4096see textThemaximumnumber ofADABAS calls fromanonline transaction
before the program is cancelled.

ADALIMIT

Note: This parameter is ignored for attached programs.

The format for the value is as follows:

Configuring the SMARTS Environment38

Configuration of the SMARTS Server Environment

ADALIMIT={ n | (dbid,n) }

- where

is an integer between 0 and 32767. If ADALIMIT=0 is specified, this parameter is ignored (no
limit).

n

is an ADABAS database ID. If 'dbid' is specified, ADALIMIT applies only to calls directed to the
specified database.

dbid

Specifies themaximumnumber of ADABAS calls from an online transactionwithout an inter-
vening terminal I/O. Programs that exceed this limit are cancelledwith errormessageADA0003.

ADAROLL

DefaultPossible ValuesUseSysparm

see textsee textThe number of seconds the SMARTS server environmentwill wait
for ADABAS calls before it rolls out the programmaking the call.

ADAROLL

The format for the value is as follows:

ADAROLL={ n | (dbid,n) | ALWAYS | (dbid,ALWAYS) | NO | (dbid,NO) }

- where

is an integer representing the number of seconds that the SMARTS server environment will
wait.

n

is an ADABAS database ID. If 'dbid' is specified, ADAROLL applies only to calls directed
to the specified database.

dbid

indicates that the program is always eligible for rollout.ALWAYS

indicates that the program is never eligible for rollout.NO

By default, the SMARTS server environment dynamically calculates the optimum value for
each database based on the statistics for the database. The starting value is ALWAYS; i.e., at
the first ADABAS call, the program is always eligible for rollout. ThenADAROLL is calculated
based on the average response time (A) using the following rule:

ADAROLL=0.1A < 0.05 sec

ADAROLL=2*A0.05 sec < A < 0.5 sec

ADAROLL=ALWAYSA > 0.5 sec

Software AG recommends that you allow this parameter to default.

39Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

ADASVC

DefaultPossible ValuesUseSysparm

13see textThe decimal SVC number to be used when communicating with
ADABAS.

ADASVC

The format for the value is as follows:

ADASVC={ n | (dbid,n) }

- where

is an integer 201 to 255 for z/OS, and 1 to 110 for VSE.n

is an ADABAS database ID. If 'dbid' is specified, ADASVC applies only to calls directed to this
database.

dbid

By default (ADASVC=13), the interface to ADABAS version 5 or above is disabled. Programs
issuing a call to ADABAS version 5 or above are terminated with ABEND code U0004.

APPLYMOD

RequiredDefaultPossible ValuesUseSysparm

nonone91 or 92Include or remove a system-wide modification in/from
the SMARTS session.

APPLYMOD

This sysparm must be used for FACOM systems. Software AG does not recommend using it
in other operating system environments.

The format for the value is as follows:

APPLYMOD={ n | (n,NO) }

- where

is the applymod number, in this case either 91 or 92.n

indicates the removal of the 'n' applymod.n,NO

Possible Applymods

When an error other than an application program error occurs in SMARTS, a dump is normally
scheduled by the SMARTS recovery processing. The dump is written to the SYSUDUMP,
SYSABEND, or SYSMDUMP DD statement using normal OS rules.

Configuring the SMARTS Environment40

Configuration of the SMARTS Server Environment

■ Applymod 73: force operating system dump
SpecifyApplymod=73 only at the request of your support representative to force an operating
system dump prior to recovery after an abend.

This will cause a dump to be taken according to the installation dump options set for
SMARTS. Please note, this Applymod is only required to produce additional diagnostics in
an error situation.

The installation could suffer severe performance problems, and large numbers of dumps
written, if this Applymod is set for any length of time and therefore it should only be set at
the request of your support representative.

■ Applymod 91: Use the OS SNAP function to write a dump
Applymod 92: Use the IEATDUMP or SDUMP function to write a dump
By default, applymod 92 is in effect, ensuring that unformatted dumps arewritten to dynam-
ically allocated datasets according to the dataset name pattern defined by parameter
DUMPDSN= .

This is the dump format expected by Software AG support when you send in a dump for
problem analysis. Also, this is by far the fastest method of writing a dump. If you prefer to
get abend dumps according to your SYSMDUMP, SYSUDUMP, or SYSABEND definitions,
specify APPLYMOD=(92,NO) in order to turn off applymod 92.

If you prefer to produce dumps using the SNAP function, specifyAPPLYMOD=91 in addition.

Note: SMARTS may write dumps for certain non-abend error situations also. These
dumps cannot be written to SYSMDUMP, SYSUDUMP, or SYSABEND, therefore,
they are always written using either IEATDUMP / SDUMP or SNAP.

Note to FACOM users: Software AG recommends that you also use the default (SDUMP).
Software AG support may ask you to format the dump using a batch job before sending it
to Software AG.

BUFFERPOOL

DefaultPossible ValuesUseSysparm

see textsee textDefines the parameter for building the general buffer pool.BUFFERPOOL

The format for the value is as follows:

BUFFERPOOL={ esize,enum [,expnum] [,loc] }

- where

41Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

Required. Determines the size of each individual element in this buffer subpool. The value
is rounded up to the next multiple of 64.

esize

Required. Determines the number of elements of the specified 'esize' that will initially be
built in the buffer subpool to be defined.

enum

Optional. Determines the number of elements by which the buffer subpool is expanded if
the primary 'enum' is not sufficient. The default 'expnum' value is "enum/4"with aminimum

expnum

of "1". The 'expnum' value is affected by the amount of space required for preemptive
expansion of the subpool. As not all requests can expand a subpool when it becomes empty,
SMARTS requires preemptive expansion of the general buffer pool. The space required for
preemptive expansion is calculated internally. When the space available in the subpool
reaches that specified for preemptive expansion, the subpool is expanded by one quarter of
the number of subpool elements, or 10, whichever is lower. The 'expnum' value must be
equal to or greater than the figure used for preemptive subpool expansion. If the specified
value is lower, it is forced to this figure.

Optional. Determines where the buffer subpool elements are to be allocated. Valid values
are BELOW, ANY, and DS:

loc

■ BELOW
the default; storage is to be allocated below the 16-megabyte line.

■ ANY
available only on 31-bit-capable systems; storage can be allocated anywhere within the
primary address space and is to be allocated above the 16-megabyte line under normal
circumstances.

■ DS
available only on ESA-capable systems; storage can be allocated within a data space.

For each correctly specified BUFFERPOOL parameter, a subpool is built in the general buffer
pool from which all non-specific buffer pool requests are satisfied.

If the BUFFERPOOL parameter is not specified, or is specified one or more times and all are
incorrect in the sense that they are unusable, SMARTS builds a default bufferpool with
standard sizes and numbers of elements based on the size of your installation.

When at least one BUFFERPOOL parameter is accepted as valid, the default is not invoked.
This means that the parameters are not merged.

DUMPDSN
z/OS only.

RequiredDefaultPossible ValuesUseSysparm

noIf DUMPDSN= is not
specified, SMARTS uses

Any valid data set name,
use of system symbols is

A data set name pattern
to be used for the dump

DUMPDSN

SDUMP (if runningpermitted. See IBMdata set when SMARTS
APF-authorized) or SNAPdocumentation of thewrites a dump using the
instead of IEATDUMP,macro IEATDUMP,

parameter DSNAD=
z/OS IEATDUMP
service otherwise no dumpwill be

taken.

Configuring the SMARTS Environment42

Configuration of the SMARTS Server Environment

Software AG recommends that you do specify this parameter for non-APF authorized install-
ations in order to avoid SNAP dumps.

For authorized installations, this is not necessary, because SDUMP can be used. SDUMPs are
written to SYS1.DUMPxx (or substitute).

Note: The data set name must be one that the userID in effect for the SMARTS address
space is permitted to allocate.

Example for fixed dump data set name:

DUMPDSN=DUMP.DATASET.NAME

Example using symbols:

DUMPDSN=DUMP.&jobname..D&YYMMDD..T&HHMMSS.

EOJ-VER

RequiredDefaultPossible ValuesUseSysparm

nonone1 to 8-character stringThe indicated character string must be entered as
part of the EOJ operator command when SMARTS
terminates.

EOJ-VER

GLOBAL-MAXENQS

DefaultPossible ValuesUseSysparm

1024100-32767The maximum number of ENQs or LOCKs that can be
outstanding from user programs in the SMARTS region
or partition.

GLOBAL-MAXENQS

INIT-PGM

DefaultPossible ValuesUseSysparm

nonesee textSpecifies the name(s) of programs to be loaded by SMARTS at the
end of initialization.

INIT-PGM

The format for the value is as follows:

INIT-PGM={ name | (name1, name2, ..., namen) }

The programs named are called from the nucleus during startup in the order they are specified,
executed in the SMARTS address space in SMARTS's key, and deleted after execution. If a
program ABENDs, SMARTS initialization optionally continues.

43Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

The programs are internal to SoftwareAG applications that run on SMARTS and are supported
by this parameter for legacy reasons.

Otherwise, it is preferable to use the SERVER statement to obtain control during startup, ter-
mination, and for operator commands, if required.

INSTALLATION

DefaultPossible ValuesUseSysparm

********character stringA 1 to 8-position character string used as an installation
identification name. The name may not contain a comma.

INSTALLATION

MAXENQS

DefaultPossible ValuesUseSysparm

151-256The maximum number of z/OS ENQs or VSE LOCKs that may be
outstanding for any one application program.

MAXENQS

Each outstanding ENQ/LOCK resource held occupies 24 bytes plus the length of RNAME in
the general buffer pool while the resource is held (whether it is held as SHR or EXCLUSIVE).

MAXTASKS

DefaultPossible ValuesUseSysparm

254 (z/OS, Facom, Hitachi) 27
(VSE)

nThemaximumnumber of tasks to be used
within a given SMARTS run.

MAXTASKS

- where 'n' is the maximum number of tasks that will be allocated within task groups:
■ For z/OS and MSP (FACOM), the number must be greater than zero and less than or equal
to 254. This is a nominal maximum of 256 less the 2 SMARTS system tasks.

■ For VSE, the number must be greater than zero and less than or equal to 27; that is, VSE
maximum tasks = 32 less 5 SMARTS system tasks.

This parameter should be allowed to default unless there is a valid reason for restricting the
number of tasks to be attached. The onlymechanisms for attaching tasks are through the start-
up parameters or through the TASKS operator command.

Configuring the SMARTS Environment44

Configuration of the SMARTS Server Environment

MESSAGE-ID

DefaultPossible ValuesUseSysparm

patch characterx (see below) |
INSTALLATION

Value to be used as the system ID in
the SMARTS message prefix.

MESSAGE-ID

SMARTS messages have a prefix with the format

pppgggnnnnx

- where

product ID (APS)ppp

message group IDggg

message numbernnnn

system IDx

By default, the patch character is used as the system ID (see the PATCHAR sysparm).

SpecifyMESSAGE-ID=INSTALLATION to use the installation ID instead of the patch character
as the system ID.

PATCHAR

DefaultPossible ValuesUseSysparm

*<char> | *Except for an asterisk (*), a character that uniquely identifies the
running SMARTS server environment within the system.

PATCHAR

- where '<char>' is any valid printable character except an asterisk (*).

If another SMARTS server environment with the same patch character is active, SMARTS is
terminated during initialization.

The default patch character '*' (asterisk) allows multiple SMARTS server environments with
this patch character to be active at the same time.

This character is important in two areas:

1. Every message sent to the console has the patch character of the issuing SMARTS server
environment following the message-identifier; for example, RTSABS0006-2. Before the sys-
parms are processed, the default patch character is shown in all messages.

2. Data can be added to the profile system as being specific to a certain system.When the data
is read, the system searches for data relating to the patch character of the running system
before taking the global information. In thisway, you can customize your sessions differently
in different SMARTS server environments using the same SMARTS system dataset.

45Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

PROGRAMISD

DefaultPossible ValuesUseSysparm

100nThe number of in-storage directory (ISD) slots to be reserved
for SMARTS online programs.

PROGRAMISD

- where 'n' is an integer from 1 to 16 digits in length. The minimum value is 10.

Each program ISD entry occupies 128 bytes of page-fixed storage containing the disk address
of an online program that has been or is executing. For a given ISD, the entries are dynamically
altered to reflect the most current program usage based upon frequency of use.

RESIDENTPAGE

DefaultPossible ValuesUseSysparm

noneprogram-nameThe name of a program to be loaded and made resident
when SMARTS is initialized.

RESIDENTPAGE

This parameter is relevant only for Com-plete. In all other environments, all modules are as-
sumed to be reentrant, and are loaded into the address space automatically at first reference.

The programmust be fully reentrant. If it is notmarked reentrant, a warningmessage is issued
on the operator's console at SMARTS initialization time.

The program must reside in the COMPLIB chain (z/OS) or the LIBDEF search chain (VSE) of
the SMARTS initialization procedure.

ROLL-BUFFERPOOL

DefaultPossible ValuesUseSysparm

not allocated(Esize,Eno,Expno,Loc)The size of the fixed roll buffer poolROLL-
BUFFERPOOL

The values have the same meaning as for the BUFFERPOOL parameter, except for Loc. The
following values are valid for the ROLL-BUFFERPOOL Loc:

allocate the roll buffer pool below the 16MB line onlyBELOW

allocate the roll buffer pool either below or above the 16MB lineANY

(the default) allocate the roll buffer pool in a data spaceDS

Configuring the SMARTS Environment46

Configuration of the SMARTS Server Environment

SAVEPOOL

DefaultPossible ValuesUseSysparm

calculated by SMARTSdepending
on the configuration

n>=100The number of "savepool" entries to
be allocated below the 16MB line.

SAVEPOOL

SAVEPOOL is a critical parameter as these areas are used as base level save areas and can
therefore not be expanded. If they are filled, SMARTS terminates abnormally.

SAVEPOOL-ANY

DefaultPossible ValuesUseSysparm

calculated by SMARTS
depending on the configuration

n>=100The number of "savepool" entries
to be allocated above the 16MB
line.

SAVEPOOL-ANY

It is important to carefully review the value specified for SAVEPOOL-ANY based on the usage
of the system.When these areas run out, the system can continue to run using savepool entries
allocated below the line; however, this wastes a valuable resource.

SECSYS

DefaultPossible ValuesUseSysparm

NONO | RACF | ACF2 | TOPSECRET |
COMSEC,R|A|T

An alternate security subsystem to validate
user IDs and passwords during logon.

SECSYS

The specified subsystem is interrogated to determine dataset access authority during utility
processing. This parameter applies to z/OS.

SECSYS-APPL

DefaultPossible ValuesUseSysparm

SAG#RTSnameThe application name to be used for uniquely identifying
this SMARTS nucleus to the external security system (see
SECSYS).

SECSYS-APPL

SERVER

DefaultPossible ValuesUseSysparm

noneserver-informationInformation that identifies a server to SMARTS.SERVER

- where the server information has the format

(serv-id , init-mod , p1 , p2 pn)

47Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

is the ID for this server (1-8 chars)serv-id

is the name of the initialization/termination routineinit-mod

are parameters to be passed to the initialization routinesp1...pn

Specifying the SERVER parameter causes SMARTS to build a server directory entry (SDE) for
the specified server and pass control to the initialization routine specified to initialize the
server.

STARTUPPGM

DefaultPossible ValuesUseSysparm

nonesee textSpecifies the name(s) of one or more SMARTS application
programs to be invoked at the end of initialization.

STARTUPPGM

The format for the value is as follows:

STARTUPPGM={ name | (name1, name2, ..., namen) }

These programs are scheduled in the order in which they are specified to execute in SMARTS
server threads once the system has initialized. These application programs execute as attached
tasks under SMARTS's user ID and can use all SMARTS functionality.

Sufficient batch or free TIBs must be available in SMARTS's TIBTAB to accommodate the
number of programs specified.

Note: Each process running in a SMARTS server environment has a control block called
TIB associated with it. The TIB contains identifying information such as a one- to five-
digit terminal identification number (TID) and a one- to eight-character terminal inform-
ation block name (TIBNAME). Either the TID or TIBNAME may be used to specify a
single process.

TASK-GROUP

DefaultPossible ValuesUseSysparm

(DEFAULT,num)(grp,num,priority,maxq)A group comprising one or more tasks,
available when SMARTS is started.

TASK-GROUP

- where

Configuring the SMARTS Environment48

Configuration of the SMARTS Server Environment

Required. The name of the task group being defined. The default task group is DEFAULT.grp

Required. The number of tasks to be allocated in the task group. This value must be greater
than 1 and less than 254 (z/OS) or 27 (VSE). The default number of tasks is calculated
dynamically based on the size of the installation.

num

the priority to be assigned to the operating system task, which is attached for z/OS and MSP
(FACOM) systems only. This parameter is accepted under VSE, but has no meaning. Valid

priority

values are 0-255; the default is 248. '255' is the priority at which the task-dependent service
processor task is running. Without the ADABAS high performance environment (HPE), this
is '250'. While '255' is accepted, the task will in fact only be given a priority of '250'.

The maximum number of TIBs (default 16) expected on this task group's work queue at the
same time. Under normal circumstances, the default should be adequate. When there are

maxq

problems and it is not, a secondary Last In First Out (LIFO) queue is used so that no work is
lost. The normal queue is First In First Out (FIFO), which ensures that work is done in the
order in which it is received. This is why the LIFO queue is only used as a secondary backup.

Important: For SMARTS, only the TASK-GROUP DEFAULT is available. Software AG
strongly recommends that you use the default definition. If other products running on
SMARTS require changes to the defaults or allow the definition of their own TASK-
GROUPs, that will be indicated in the relevant documentation.

Notes:

1. A maximum of 8 task groups may be defined.

2. Task-group names are converted to uppercase prior to being processed; therefore, a para-
meter entered in lowercase is treated as, and appears in, uppercase letters.

3. If more than one specification appears for a task group, the last valid specification is used.

4. The task group DEFAULT must always exist in the system. If it is not explicitly defined by
the installation, the task group is built by the system with the default values.

5. Note that the total number of tasks to be attachedmust not exceed theMAXTASKS specific-
ation. This is not checked until the task groups are being built; however, exceeding the value
leads to task-group allocation errors as against parameter errors.

Examples:

TASK-GROUP=(DEFAULT,4)

The DEFAULT task group is allocated with four attached tasks, the default priority, and the
default maximum queue size specification.

49Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

TASK-GROUP=(DEFAULT,4,200)
TASK-GROUP=(TASK-GRP,4,150)

The DEFAULT task group is allocated with four attached tasks with a priority of 200 and the
default maximum queue size specification. A second group called TASK-GRP is also allocated
with three attached tasks, a priority of 150, and the default maximum queue size specification.

THREAD-GROUP

DefaultPossible ValuesUseSysparm

see belowsee belowA thread group containing one or more thread
subgroups and threads, to be available when SMARTS
is started.

THREAD-GROUP

The format for the value is

(grp,(sub,size,num,cpu,real,key),...,(sub,size,num,cpu,real,key))

- where

Required. The name of the thread group being defined.grp

The name of the subgroup being defined. If a subgroup name is specified more than once for
the same group, the last valid specification is used when parameter processing has been
completed.

sub

Required. The amount of storage in kilobytes to be allocated for each thread below the line. A
valid value is between 8 kilobytes and 1 megabyte.

size

The number of threads to be allocated in the thread subgroup. The value must be greater than
1 and less than 4096. Generally, this subparameter is required. It can be omitted for one (and

num

only one) thread subgroup in the address space; in this case, the number of threads to be allocated
for the subgroup is calculated dynamically by SMARTS based on the size of the installation.

The CPU time in seconds (default 0.00) that a user program can use in the thread subgroup for
one SMARTS transaction. This value may be entered as an integer or to a level of hundredths

cpu

of seconds using the 'n.nn' format. If a 0 is provided as the CPUTIME for a thread subgroup, no
CPU limit is placed on programs running in the associated threads.

The wait time in seconds (default 0.00) for the thread subgroup, after which a message is issued
to the console if the user program has not given up control of its thread. This value may be

real

entered as an integer or to a level of hundredths of seconds using the 'n.nn' format. If 0 is specified,
elapsed time is not checked for the thread subgroup.

Configuring the SMARTS Environment50

Configuration of the SMARTS Server Environment

The key (default M) in which the threads within the subgroups are allocated:key
■ M
The thread keys are a mixture of user keys excluding the key in which SMARTS is running.

■ N
No storage protection is implemented and all threads run in the same key as SMARTS.

Note: The user may also specify a value in the range 1 to 15 inclusive to allocate a thread to that
key explicitly.

The default value is

THREAD-GROUP=(DEFAULT,($DEFAULT,8,num))

- where "num" is calculated dynamically based on the size of the installation.

Important: For SMARTS, only the THREAD-GROUP DEFAULT is available. Software
AG strongly recommends that you use the default definition. If other products running
on SMARTS require changes to the defaults or allow the definition of their own
THREAD-GROUPs, that will be indicated in the relevant documentation.

Notes:

1. A maximum of 8 thread groups may be defined.

2. A maximum of 8 subgroups can be allocated per thread group. The subgroups may be
defined on one line or on different lines. When a second THREAD-GROUP statement is
used, the same group name must be specified to relate the subgroup entries.

3. Thread group and subgroup names are converted to uppercase prior to being processed;
therefore, a parameter entered in lowercase is treated as, and appears in, uppercase letters.

4. If more than one specification appears for a thread subgroup of a thread group, the last
valid specification is used.

5. The amount of storage specified on the THSIZEABOVE sysparm is allocated above the line
for each thread defined as a result of the THREAD-GROUP sysparm.

6. The thread group DEFAULT must always exist in the system. If it is not explicitly defined
by the installation, the thread group is built by the system with the default values. If it is
defined, the system ensures that a thread subgroup with a thread size at least as large as
that required by DEFAULT is allocated. If not, the system allocates an additional subgroup
for the group. If toomany subgroups have been defined, the last one defined is overwritten
to allow for the default specification.

7. The keyword data is processed from left to right. Ifmore than one thread subgroup is defined
on one line and the line contains an error, even if an error message is issued for the line,
any subgroups processed up to the error are still accepted. That is to say, if the first subgroup

51Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

is correct and the second is not, an error message is issued but the first thread subgroup is
defined while the second and subsequent specifications in the same statement are ignored.

Examples

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3),(BIGUTIL,300,2,5,9,15))

This allocates the DEFAULT thread group with two subgroups:
■ the first subgroup called SMALUTIL contains three threads with 84K below the line and
takes the defaults for CPUTIME, REALTIME, and the protectkey to be allocated to the thread.

■ the second subgroup called BIGUTIL contains two threads with 304K below the line, has a
maximum CPUTIME of 5 CPU seconds, a REALTIME value of 9 seconds, and each thread
has a storage protectkey of 15.

The following sets of sysparms defines exactly the same thread subgroups:

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3),(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(DEFAULT,(SMALUTIL,40,8),(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))

The following sets of sysparmsdefines exactly the same thread subgroups in two thread groups,
one called DEFAULT and the other called EXTRAGRP:

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))
THREAD-GROUP=(EXTRAGRP,(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(EXTRAGRP,(SMALUTIL,80,3))
THREAD-GROUP=(DEFAULT,(BIGUTIL,300,2,5,9,15))

THSIZEABOVE

DefaultPossible ValuesUseSysparm

1024nThe amount of storage above the 16 MB line, in multiples of
1024 bytes, to be allocated to each thread.

THSIZEABOVE

Configuring the SMARTS Environment52

Configuration of the SMARTS Server Environment

TIBTAB

DefaultPossible ValuesUseSysparm

ANYnnnnnDYNnnnnn | ANYnnnnnThe location and size of the TIB table to be built when
SMARTS is initialized.

TIBTAB

- where

is the table to be built below the 16MB lineDYN

is the table to be built above the 16MB lineANY

is the number of TIBs. The maximum is 32767. For the default value, "nnnnn" is calculated
dynamically based on the size of the installation.

nnnnn

Note: Each process running in a SMARTS server environment has a control block called
TIB associated with it. The TIB contains identifying information such as a one- to five-
digit terminal identification number (TID) and a one- to eight-character terminal inform-
ation block name (TIBNAME). Either the TID or TIBNAME may be used to specify a
single process.

TRACECLASS

DefaultPossible ValuesUseSysparm

QTIBclass | (class,OFF)The class of trace event to be included in (or excluded from)
the SMARTS trace table.

TRACECLASS

- where 'class' is one of the following valid trace classes:

used for support purposesGENERIC

TIB queue managementQTIB

application program requestsOP

fixed-length buffer pool operationsFIXBPOOL

roll-processing eventsROLL

resource manager get/freeRESOURCE

dispatcher eventsDISPATCH

The option '(class,OFF)' indicates exclusion of the specified class.

53Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

TRACEOPTION

DefaultPossible ValuesUseSysparm

no options activeoptionThe specified trace option is active for this
execution of SMARTS.

TRACEOPTION

The valid trace options are as follows:

The trace continues to run during SMARTS abnormal termination. (Normally the trace
stops recording at the first indication of termination.) Use onlywhen required by Software
AG support personnel.

ABEND

Trace processing uses the extended form of the trace record. Use only when requested
by support personnel to find specific information as it decreases the number of trace
records that can be held in a trace buffer.

EXTENDED

TRACETABLE

DefaultPossible ValuesUseSysparm

8Kn | nKThe size of the SMARTS trace table,which is used to trace events
occurring within the SMARTS system.

TRACETABLE

The TRACETABLE sysparm can be a valuable tool for problem resolution.

The minimum size of the trace table is 8K.

TRACETABLE=0 indicates that no tracing is performed.

WORKLOAD-AVERAGE
WORKLOAD-MAXIMUM

The WORKLOAD-AVERAGE parameter specifies a normal workload value, and the WORK-
LOAD-MAXIMUM parameter specifies a maximum workload value. SMARTS uses these
values togther with the region sizes above and below the 1bMB line to configure itself.

These parameters are not required, but tuning them may improve performance.

DefaultPossible
Values

UseSysparm

WORKLOAD-MAXIMUM
divided by 4

1-32767The average number of
parallel processes expected to
run in SMARTS

WORKLOAD-AVERAGE

50 if
WORKLOAD-AVERAGE is

1-32767The maximum number of
parallel processes expected to
run in SMARTS

WORKLOAD-MAXIMUM

not specified, otherwise
WORKLOAD-AVERAGE
times 4

Configuring the SMARTS Environment54

Configuration of the SMARTS Server Environment

Example:

WORKLOAD-AVERAGE=50
WORKLOAD-MAXIMUM=400

55Configuring the SMARTS Environment

Configuration of the SMARTS Server Environment

56

6 SMARTS Global Environment Variables

■ File Requirements ... 58
■ File Processing ... 58
■ Examples .. 59

57

The SMARTS server system makes it possible for you to specify global environment variables for
the SMARTS address space. These variables are returned to a program issuing the 'getenv' function
for any given environment variable and enable a system-wide specification of any given variable.
If the same variable has been set in a local process using the 'putenv' function, this is returned and
the global version of the variable is ignored.

File Requirements

For z/OS environments, the file containing these variables

■ has a record format of F, FB, or VB.
■ has a valid record length. Software AG recommends a record length small enough for editors
to handle. A record length of 256 is sufficient for most needs.

■ is identified on the ENVIRONMENT_VARIABLES configuration parameter of SMARTS.

For VSE environments, the file containing these variables

■ is a member in a VSE library.
■ is identified on the ENVIRONMENT_VARIABLES configuration parameter of SMARTS.

For other environments, see the documentation for the particular SoftwareAG application product
that uses SMARTS.

File Processing

The contents of the file are processed as follows:

1. Each record in the file is read. Only one global environment variable may be specified per line.

2. The start of the variable name is the first nonblank character in the record.

3. The end of the variable name is the next '=' sign or blank found following the first nonblank.

4. If there is no '=' sign or no data follows the '=' sign, the environment variable is defined but has
no value; that is, it is a null-terminated string with null as the first character.

5. Comments are allowed and are specified by an asterisk (*) in column 1.

6. To establish the value, SMARTS searches from the end of the record to find the first nonblank.
The data after the equals sign to this point is treated as the variable. It is not possible to specify
comments on these lines. For this reason, SoftwareAG recommends that you not use numbered
datasets such as those produced by TSO/ISPF to avoid interference with the values assigned to
environment variables.

Configuring the SMARTS Environment58

SMARTS Global Environment Variables

7. If the string startswith an apostrophe and endswith an apostrophe, the apostrophes are omitted
in the environment variable but all data between them (including blanks, apostrophes, etc.)
form part of the environment variable.

8. If the string starts with the value "X'" (that is, the character X followed by an apostrophe) and
ends with an apostrophe, the data between them is treated as a hexadecimal value and must
therefore be 0 to 9 or A to F. Note that 'a' to 'f' are treated as invalid hexadecimal data.

9. If the same variable name is specified more than once, the last one in the file is the active value
for the variable after initialization.

Examples

Following are a number of examples of global variables:

MyVariable=This is my variable string

A request to getenv for MyVariable returns a pointer to 'This is my variable string' (without apo-
strophes).

QuotedVariable='This is my quoted variable string '

A request to getenv for QuotedVariable returns a pointer to 'This is my quoted variable string '
(without the apostrophes).

NullVariable=

A request to getenv for NullVariable returns a pointer to '' (without apostrophes).

HexVariable=X'AABBCCDD'

A request to getenv for HexVariable returns a pointer to the hexadecimal value 'AABBCCDD'.

NotHexVariable=x'AABBCCDD'

A request to getenv for NotHexVariable returns a pointer to the string 'AABBCCDD' (without the
apostrophes).

59Configuring the SMARTS Environment

SMARTS Global Environment Variables

60

7 Configuring Resources for SMARTS

The primary consideration is the amount of storage made available to the POSIX server in the
address space, whether in batch or in the SMARTS server environment. Basically, the larger the
address space, themore requests that can be concurrently serviced using attached tasks and address
space storage.

The SMARTS server automatically calculates its optimal configuration based on

■ the amount of storage available in the address space; and
■ the expected average and maximum workload as indicated by the WORKLOAD-AVERAGE
and WORKLOAD-MAXIMUM parameters.

For VSE environments, Software AG recommends that you use the parameter rather than the
WORKLOAD-AVERAGE and WORKLOAD-MAXIMUM parameters.

61

62

	Configuring the SMARTS Environment
	Table of Contents
	Configuring the SMARTS Environment
	1 Overview of Configuration Parameters
	2 SMARTS Configuration Sources
	3 Sysparm Format
	4 SMARTS POSIX Layer Configuration
	SMARTS POSIX Log and Trace Parameters
	SMARTS POSIX Tracing Parameters
	SMARTS POSIX Recovery Parameters
	SMARTS POSIX Statistics Collection Parameters
	SMARTS POSIX Miscellaneous Parameters
	Standard CDI Definitions

	5 Configuration of the SMARTS Server Environment
	SMARTS Server Configuration Parameters

	6 SMARTS Global Environment Variables
	File Requirements
	File Processing
	Examples

	7 Configuring Resources for SMARTS

