
Ostia Portus

Reference

Version 2012-12-17

December 2012

This document applies to Ostia Portus 2012-12-17 15:48:15 (MET) and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

© Copyright Ostia 2012.
All rights reserved.

The name Ostia Software Solutions and/or all Ostia Software Solutions product names are either trademarks or registered trademarks
of Ostia Software Solutions. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents

Reference .. v
1 Portus Resource Access ... 1

Overview .. 2
2 SOAP ... 15

SOAP Headers .. 16
Soap Operations for Server Configuration .. 19

3 REST .. 23
Introduction .. 24

4 Frequently Asked Questions ... 41
How do I active the Software AG sagenv file post Portus Installation? 42
How do I modify the machine identifier in the JESMSGLG? 42

5 Performance Hints ... 43
6 Internationalization ... 45

Setting codepages ... 46
Which codepage do I use? .. 46
SOAP versus REST differences .. 46
Troubleshooting ... 47

7 Creating a Stylesheet for your Portus Data ... 49
Create HTML page from City XML ... 50

8 Language Structure Support ... 59
The Portus Representation of Data .. 60
‘Tuple’ Based Databases ... 60
Record Based Databases ... 61
Calling Application Programs ... 61
Representing Individual Fields .. 62
Representing Structures ... 63
Representing Arrays .. 65
Representing Redefines .. 67
Summary .. 70

9 Data Masking ... 71
Example .. 72

iii

iv

Reference

The following reference materials are available for Portus:

■ Glossary
■ Portus Resource Access
■ SOAP
■ REST

v

vi

1 Portus Resource Access

■ Overview ... 2

1

Overview

This section describes the operations exposed by Portus to access data sources. These operations
are described in a WSDL which is defined for each web service. A client program connecting to a
web service can read the WSDL to determine what operations are available on the server. These
operations can be invoked using SOAP or RESTful query.

Portus also supports MTOM for binary data, raw XML, and HTML. WSDLs can be registered in
a UDDI server for service look-up.

Supported protocol Versions

WSDL 1.1

SOAP 1.1

MTOM 1.0

Reference2

Portus Resource Access

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/Submission/soap11mtom10/

HTTP 1.1

ODBC Version 3

Portus can also connect to the Messaging systems such as IBMMQ and Software AG EntireX via
their C-interfaces.

Web Service Security can be handled by HTTP Basic Profile authorization (via Apache), or con-
nectivity with an external security manager, such as RACF.

Further Reading

Prerequisites

Retrieve WSDL

Web Service Operations

Providing Key Information

Prerequisites

At this point your Portus Server should be installed, configured and started.

If you have not yet configured any web services, please refer to the Portus Control Center section
and add at least one web service

Retrieving the WSDL for your resource.

All web services defined will have a WSDL associated with them. This is the starting point for
using the operations provided by Portus. TheWSDL describes the operations that may be carried
out, and how they are used. This includes a description of valid parameters, data and responses
for each of the operations.

In order to get the WSDL for a particular resource you simply issue a standard http request, spe-
cifying:

■ the server name or IP-address of the server where Portus is installed [and running]
■ the TCP Port number that Portus is listening on (as provided in the installation)
■ the name of the service. (this is the value of the "Name" field in the web service properties)

The following example shows the URL required to retrieve theWSDL for an Adabas "Employees"
file.

3Reference

Portus Resource Access

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://support.microsoft.com/kb/110093

PortusGatewayServer Name

56000Port Number

adabas_EmployeesName

http://PortusGateway:56000/adabas_Employees?WSDLURL for WSDL

Portus Web Services Operations for Data Resources

The operations provided by Portus for accessing data resources [files, databases, programs, etc.
] are now explained.

Parameters are required unless otherwise stated.

list (SOAP)Operation

LIST (REST)

The list operation returns a list of records or rows from your data source.Description

The data returned can be limited or restricted by providing key information.

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Key data

Key data must be entered for at least one of the fields defined as a key.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

Reference4

Portus Resource Access

select (SOAP)Operation

SELECT (REST)

The select operation returns a list of records or rows from your data source. The maximum
number of rows/records returned can be set via the Portus Control Center.

Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

The data returned can be limited or restricted by providing key information. The select operation
extends the capability of the list operation by enabling searches on a larger set of criteria.

The key information for a select is wrapped in a condition block and can be repeated several
times within that block. Each key entry represents an 'AND' condition. Condition blocks can
also be repeated several times. Each condition block represents an 'OR' condition. The condition
block accepts the following specifiers:

Conditions ■ Less than a specific value (LT).
■ Less than or equal to a specific value (LE).
■ Equal to a specific value (EQ).
■ Greater than a specific value (GT).
■ Greater than or equal to a specific value (GE).
■ Not equal to a specific value (NE).
■ Starting with a specific value (START). Character based fields only.
■ Ending with a specific value (ENDS). Character based fields only.
■ Containing a specific value (CONTAINS). Character based fields only.

SOAPExample

<soapenv:Body>
<nos:adabasEmployeeSelectElement>

<!--1 or more repetitions:-->
<condition>

<!--Zero or more repetitions:-->
<personnel_id Condition="GT">50012100</personnel_id>
<personnel_id Condition="LE">50012700</personnel_id>

</condition>
<condition>

<!--Zero or more repetitions:-->
<personnel_id Condition="EQ">50012900</personnel_id>

</condition>
</nos:adabasEmployeeSelectElement>

</soapenv:Body>

REST

http://localhost:56005/adabas_Employees_9?
SELECT
&condition[1].personnel_id>50012100

5Reference

Portus Resource Access

&condition[1].personnel_id<=50012700
&condition[2].personnel_id=50012900

The example above specifies 2 condition blocks. This will return data where the (personnel_id
> 50012100 and personnel_id <= 50012700) or personnel_id = 50012900

Parameters ■ Key data

Key data must be entered for at least one of the fields defined as a key.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

selectNextOperation

The selectNext operation returns a list of records or rows from your data source. A selectNext
operation may only be called following a select and subsequently other selectNext calls. For

Description

this functionality the initial select operation has to initiate a new Conversation. See
Conversational Processing. The resultant conversation id must be passed in any associated
selectNext calls. selectNext callsmay be issued until end of file is reached ormay be terminated
by a selectEnd call. Themaximumnumber of rows/recordswill be that set for set via the Portus
Control Center.

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

There is no key information for a selectNext operation as this will have been passed in by the
initiating select operation.

Parameters ■ Key data

None
■ Options

None

Reference6

Portus Resource Access

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

Not available

selectEndOperation

The selectEnd operation terminates a sequence of select and/or selectNext calls with a
conversation. A selectEnd operation may only be called following select or selectNext

Description

operations. For this functionality the select operation has to initiate a new Conversation. The
resultant conversation id must be passed in the selectEnd call.

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

There is no key information for a selectEnd operation as this will have been passed by the
initiating select operation.

Parameters ■ Key data

None
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

Not available

selectCountOperation

The selectCount operation returns a count of the records or rows that match the criteria set in
the condition block(s).

Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

The selectCount operation is identical to that of the select operation in terms of its search
capabilities.

7Reference

Portus Resource Access

The key information for a selectCount is wrapped in a condition block and can be repeated
several times within that block. Each key entry represents an 'AND' condition. Condition
blocks can also be repeated several times. Each condition block represents an 'OR' condition.
The condition block accepts the following specifiers:

Conditions ■ Less than a specific value (LT).
■ Less than or equal to a specific value (LE).
■ Equal to a specific value (EQ).
■ Greater than a specific value (GT).
■ Greater than or equal to a specific value (GE).
■ Not equal to a specific value (NE).
■ Starting with a specific value (START). Character based fields only.
■ Ending with a specific value (ENDS). Character based fields only.
■ Containing a specific value (CONTAINS). Character based fields only.

Parameters ■ Key data

Key data must be entered for at least one of the fields defined as a key.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

get (SOAP)Operation

GET (REST)

The get operation returns a single record or row from your data source.Description

The data returned is specified by providing unique key information identifying a single record
/ row.

Reference8

Portus Resource Access

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Key Data

Key data must be entered for at least one of the fields defined as a primary key field, so that
a single record can be identified.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

add (SOAP)Operation

ADD (REST)

The add operation adds a single record or row of data to your data source.Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Add Data

Provide values for each of the fields defined. These are the fields / columns of the data on
your data source.

You must add data for at least one of the fields specified as being primary key fields.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

9Reference

Portus Resource Access

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

update (SOAP)Operation

UPDATE (REST)

The update operation updates a single record or row of data.Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Update Data

Provide values (NULL or otherwise) for each of the fields defined. These are the fields /
columns of the data on your data source.

Key data must be entered for at least one of the fields defined as a primary key field.

Refer to the section Specifying Key Data for more information.

Fields that have been left empty or NULL, e.g. <data></data>will be set to this value
accordingly.

■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

Reference10

Portus Resource Access

delete (SOAP)Operation

DELETE (REST)

The delete operation deletes a single record or row of data from the data source.Description

This operation will only be available when the web service is a "database" type, for example,
Adabas or MySQL

Parameters ■ Key Data

Key data must be entered for at least one of the fields defined as a primary key field, so that
a single record can be identified.

Refer to the section Specifying Key Data for more information.
■ Options

None

SOAPResult

The result will be either :

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

invoke (SOAP)Operation

INVOKE (REST)

The invoke operation makes a call to a function or program.Description

This operation will only be available when the web service is a "program" type, for example,
NATURAL, COBOL or when the web service describes a database stored procedure.

Parameters ■ Parameters

Each of the fields defined can be input, output, or input+output.

Provide values for each of the fields defined as input or input+output. These match the
function/program parameters that are required on the call.

SOAPResult

The result will be either :

11Reference

Portus Resource Access

■ an XML document wrapped in a SOAP message and containing the requested data
■ a SOAP fault message

REST

The result will be either :

■ an XML document containing the requested data
■ a fault message

Specifying Key Data

Keys or Key Fields in Portus terms are simply fields or columns on your data source (file, table, etc)
that may be used to narrow a search for a record or row of data.

Note: key fieldsmay or may not be indexed at your data source. Indexing provides better re-
sponse times from your data source. If you are unsure what, if any, fields are key fields (in
Adabas terms: Descriptors) or allowed to be used for searching, contact your data source
administrator (DBA, etc.).

Key fields are specified to Portus by setting the appropriate value for the attribute "key type" in the
Resource Description.

Key Types

There are two types of key fields for data sources:

Primary Key Fields
Primary Key Fields are fields in a data source that must always contain unique values.

They are required on all data source operations except the list operation, where they are op-
tional. Secondary keys may be used instead or in addition on a list request.

Their values will not be altered in the update operation.

Primary Keys cannot contain wild card symbols, except on the list operation.

Secondary Key Fields
Secondary Key Fields are fields that may be used in narrowing a search.

They are not required in any operation, and their values can be updated.

They may contain wild card symbols.

Reference12

Portus Resource Access

Using Wild card Symbols and other Generic Search criteria

Wild cards are used where you do not wish to specify an exact value in a key field, but use a
generic specification that will match for a range of different values.

These search modifiers may only be used on the list operation.

Portus currently supports the following generic search criteria :

Wild card for one or more characters
The character "*" may be used as a wild card for all characters.

It may only be used on fields defined as "string" fields.

Where it appears, it will match any character or group of characters.

Note: for Adabas resources, this wildcard may only appear at the end of the string data
supplied.

Example

"Ga*" would match "Gat", "Gate", "Gateway", etc.

13Reference

Portus Resource Access

14

2 SOAP

■ SOAP Headers ... 16
■ Soap Operations for Server Configuration .. 19

15

SOAP Headers

In Portus, the SOAP Headers are used for versioning, the support of conversational SOAP pro-
cessing, support of transactions, and specific settings on the datasource you are accessing. By default
all elements are "empty". To get the default behaviour, all header elements should be left blank,
or removed altogether. Example:

<soap:Envelope xmlns:rapdv="http://www.risaris.com/namespaces/xmiddle" ↩
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" ↩
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <soap:Header>
 <rapdv:AdabasEmployeeHeader>
 <Version/>
 <ConversationState/>
 <ConversationId/>
 <TransactionState/>
 <TransactionId/>
 </rapdv:AdabasEmployeeHeader>
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

Conversational Processing

Every time a SOAP request is made to Portus, this request must be associated with a specific
context. By default, a new context is created and destroyed for every SOAP Request.

The user may also use the SOAP Headers to re-use and re-connect to a specific context.

When a user starts, re-uses, and ultimately finishes with their context, the process is known as a
"conversation". In the SOAP Header, the "ConversationState" and "ConversationId" are used for
conversational processing, see below for more information.

Reference16

SOAP

The Version Element

The 'Version' element is currently unused. It will be brought into use in future versions of Portus.

The ConversationState Element

The 'ConversationState' element is used to control conversation processing. It should be one of
the following:

DescriptionState

A new conversation is being started. In this case, the ConversationID (see below) value must by
NULL or an error will occur.

New

An existing conversation is activewithwhich the current SOAPmessage should be associated.When
the SOAP request is processed, the conversationmust remain active as there are further SOAP requests
to be sent. The ConversationID foundmust have been returned as a result of a previous 'new' request.

Old

An error will occur if the ConversationId (see below) provided cannot be found.

An existing conversation is activewithwhich the current SOAPmessage should be associated.When
the SOAP request is processed, the conversationmust be terminated. The ConversationID (see below
) found must have been returned as a result of a previous 'new' request.

End

An error will occur if the ConversationId provided cannot be found.

The ConversationId Element

TheConversationId unquely identifies the conversation, and it returned only after a 'New' request
is successfully processed. The user should never modify or create this ID. The ConversationId
must be present on an 'Old' or 'End' request.

Transaction Processing

In Portus, the platform's Transaction Manager (TM) will be engaged to handle transactions. A
default TM is provided as part of the ASG installation. It can be found in <asg install dir>/librar-
ies/transactionManagerDummyDll.so. The environment variable TMSTUB is used to point to the
transactionmanager shared object. This shared object provides interfaces to handle the transaction.

Note: The framework for engaging transactionmanagers is subject to change. Currently the
transactionManagerDummyDll.so does not provide any "real" transactionality. Rísarís are
current looking for early adopters to work with us to fully implement and test this techno-
logy.

In the SOAP Header, the "TransactionState" and "TransactionId" are used for transactional pro-
cessing; see the table below for more information.

17Reference

SOAP

The TransactionState Element

If a transaction involves modifications that will occur over multiple SOAP messages, the conver-
sational processing logic must be used to associate the SOAPmessages and thus the transactional
information.

If a transaction involvesmodifications that will all be completed as part of the one SOAPmessage,
the conversational processing logic is not required.

When the request uses an active conversation, and is add/update/delete, a transaction is implicitly
started.

If a conversation is ended before the transaction is committed, a implicit back out will occur.

The Transaction State may be one of the following:

DescriptionState

This will cause a commit to be issued when the current SOAP message has been processed.Commit

If no conversation existed previously for this SOAP request, an error will result.

When returned in the SOAP response, it indicates that the transaction has been committed, and
transaction ID is provided for reference.

This will cause a backout to be issued when the current SOAP message has been processed.Backout

If no conversation existed previously for this SOAP request, an error will result.

When returned in the SOAP response, it indicates that the transaction has been backed out, and
transaction ID is provided for reference.

The Transaction Id Element

The Transaction ID is purely informational, and has no functional bearing on the transaction
process. It is returned on any SOAP message and is intended to be used for tracking purposes.

It is not mandatory to provide the Transaction ID. As only 1 transaction can ever be active on a
conversation, Portus will auto-reconnect to the current transaction internally.

Reference18

SOAP

Adabas specific headers

When working with Adabas services, there are a number of specific SOAP headers that will be
available

These headers are listed in the Using Portus with Adabas section.

Relational database specific headers

When working with relational database services, i.e. MySQL, MS SQL Server, DB2, Oracle, etc,
the specific SOAP Header are

Turn off the AutoCommit flag on the databaseSOAGateway_Internal_AutoCommit

Soap Operations for Server Configuration

Portus exposes a number of SOAP operations / methods to retrieve and alter the Portus Server
Configuration from any SOAP enabled client.

Note: These interfaces are likely to change in the future, they are provided on a trial basis,
be aware that you might have to change any "applications" built on top of these interfaces
! As soon as "stable" interfaces are available, this fact will be announced and documented.

adaptorList

This operation is used to load up a Portus driver library, and return the assoicated internal inform-
ation.

This operation takes 1 input, libraryName should be set to the name of the library to load and
query.

configList

This operation is used to list the current configuration in use by the Portus server. The current
configuration is useful where you wish to make changes to existing configuration items, or just
to make sure you are not trying to add, for example, a resource URI that is already in use.

This operation currently has no options.

The full configuration document, minus the XML header, is returned in the soap response.

19Reference

SOAP

configRemove

This operation is used to reset the value of an item in the configuration, or to remove an item from
the configuration.

Only certain items or levels of items may be altered using this operation. The definition in the
WSDL showswhat elements may be used. Refer to it for further details onwhat type of itemsmay
be removed and what items may only have their value reset.

A configuration item which is reset will assume it's default value if it is an item that cannot be re-
moved from the configuration.

Configuration items changed by this operation are effective as soon as the engine can make them
so.

This operation currently has no options.

configReplace

This operation is used to replace the current configuration file, or to write a new configuration to
file on the server.

If the element 'configFileName' is omitted or left empty, then the configuration file currently in use
will be overwritten - if it is in the configuration directory.

If the element 'configFileName' is specified, then the configuration will be written to a file of that
name in the configuration directory.

The newly written configuration will not come into effect until the Portus server is next started.

If the element 'configFileName' was specified, and you wish to use this configuration, then before
re-starting the Portus server youmust alter the system environment variableXMIDDLE_CONFIG-
URATION_FILE so that it refers to your new configuration file.

This operation currently has no options.

configSet

This operation is used to set the value of an item in the configuration, or to add an item to the
configuration.

Only certain items or levels of items may be altered using this operation. The definition in the
WSDL showswhat elements may be used. Refer to it for further details onwhat type of itemsmay
be added and what items may only have their value altered.

Configuration items changed by this operation are effective as soon as the engine can make them
so.

Reference20

SOAP

This operation currently has no options.

21Reference

SOAP

22

3 REST

■ Introduction .. 24

23

Introduction

Web services can also use other technologies, apart from SOAP, such as RESTful implementations
on top of HTTP. Representational State Transfer (REST) is an approach based on the architectural
style of the Web itself. The Portus also provides this URL based approach to access resources.

REST Overview

Portus allows users to access any web service via a REST-style URL request. In general, this is a
more simplistic way of accessing services, useful in demo scenarios, and with clients that do not
have support for SOAP, but do have support for retrieving URLs information (such as Microsoft
Excel).

A REST request is similar to the WSDL request, but with extra arguments. Generally, it is recom-
mended that the WSDL is retrieved first, as it gives the client the ability to see what fields have
been set as keys. All operations that are possible using the WSDL are possible with REST, with
some caveats.

NotesOperation

MTOM is not supported. In the case where binary objects are returned on request, the XML
will be escaped into HTML, and a link to the binary object will also be returned.

get

HTTP POST must be used.add/update

HTTP DELETE must be used.delete

Example

The following is an example of retrieving data with a REST request

http://host:port/myService?LIST&ID=4*&Name=J*

This will attempt to call the "list" operation, passing in a value of 4* to the ID field (which has been
defined as a primary/secondary key) AND the Name field set to J*

Enhanced REST Operations

Portus provides several operations for eachweb service so it has enhanced its REST implementation
to support them e.g. SELECT and INVOKE. Typically these may require complex parameters in
order to be called.

http://localhost:56005/adabas_Employees_9?
SELECT
&condition[1].personnel_id>50012100
&condition[1].personnel_id<=50012700
&condition[2].personnel_id=50012900

Reference24

REST

The example above specifies 2 condition blocks. This will return data where the (personnel_id >
50012100 and personnel_id <= 50012700) or personnel_id = 50012900

Database WSDLs

A Portus database WSDL defines requests which reflect database access.

Supported Requests

1. LIST

2. GET

3. DELETE

4. ADD

5. UPDATE

6. SELECT

7. SELECTCOUNT

URI

As usual in the definitions element there will be a value for the targetNamespace uri:

<definitions targetNamespace="uri://46.46.46.46:56421/Customers"
name="CustomersRootCollection">

The uri gives us the starting portion of a REST request:

http//46.46.46.46:56421/Customers

Note that in Portus WSDLs a unique identifier (UNIQID) is prepended to various elements and
aslo contained in the uri e.g. in this case Customers in the name CustomersRootCollection.

Messages

For each the above requests there will be a message entry in the WSDLwith the following names:

getRequest, listRequest, deleteRequest, addRequest, updateRequest, selectRequest and selectCoun-
tRequest

e.g.

<message name="listRequest">

<part name="CustomersGroupListKey" element="asg:CustomersGroupListElement"/>

</message>

25Reference

REST

.

.

<message name="getRequest">

<part name="CustomersGroupGetKey" element="asg:CustomersGroupGetElement"/>

</message>

.

.

<message name="deleteRequest">

<part name="CustomersGroupDeleteKey" element="asg:CustomersGroupDeleteElement"/>

</message>

.

.

.

Note that there will be some others which are in the WSDL which are not supported in a REST
request i.e. selectNext and selectEnd.

e.g.

<message <message name="selectNextRequest">

<part name="CustomersGroupSelectNextRequest" element="asg:CustomersGroupSelectNextEle-
ment"/>

</message>

Each message element has a part element which gives further details about the request structure
via REST:

LIST

<part name="UNIQIDGroupListKey" element="asg:UNIQIDGroupListElement"/>

<xs:element name="UNIQIDGroupListElement" type="asg:UNIQIDGroupKeyType"/>

<xs:complexType name="UNIQIDGroupKeyType">

<xs:sequence>

Reference26

REST

<xs:element name="ID" nillable="true" type="xs:int"/>

<xs:element name="Account_ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this pointwe knowour input parameter(s). A feature of the LIST request is that these parameters
can be wild carded as shown below and/or omitted:

http://46.46.46.46:56421/Customers?LIST&ID=*

http://46.46.46.46:56421/Customers?LIST&ID=2

http://46.46.46.46:56421/Customers?LIST&ID=2*

http://46.46.46.46:56421/Customers?LIST&ID=*&Account_ID=2*

http://46.46.46.46:56421/Customers?LIST&Account_ID=2*

http://46.46.46.46:56421/Customers?LIST&Account_ID=*5

GET

<part name="UNIQIDGroupGetKey" element="asg:UNIQIDGroupGetElement"/>

<xs:complexType name="UNIQIDGroupPrimaryKeyType">

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this pointwe knowour input parameter(s). Note that aGET targets a specific row in the database
and returns one record or none if not found:

http://46.46.46.46:56421/Customers?GET&ID=25

DELETE

<part name="UNIQIDGroupDeleteKey" element="asg:UNIQIDGroupDeleteElement"/>

<xs:element name="UNIQIDGroupDeleteElement" type="asg:UNIQIDGroupPrimaryKeyType"/>

<xs:complexType name="UNIQIDGroupPrimaryKeyType">

27Reference

REST

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s). Note that a DELETE targets a specific row in the
database. If successful it returns a ‘delete successful’ message or an error stating that it does not
exist.

http://46.46.46.46:56421/Customers?DELETE&ID=25

ADD

<part name="UNIQIDRoot" element="asg:UNIQIDRootAddElement"/>

<xs:element name="UNIQIDRootAddElement" type="asg:UNIQIDRootType"/>

<xs:complexType name="UNIQIDRootType">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="UNIQIDGroup"
type="asg:UNIQIDGroupType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UNIQIDGroupType">

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="Surname" type="xs:string"/>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="xs:string"/>

<xs:element name="Phone" type="xs:string"/>

Reference28

REST

<xs:element name="SSN" nillable="true" type="xs:int"/>

<xs:element name="Account_ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s). All elements are at the same level i.e. not in a
structure so can be sequentially added to the REST request.

http://46.46.46.46:56421/Customers?ADD&ID=Value&FirstName=Value&Surname=Value&Street=Value&City=Value&State=Value&Zip&Phone=Value&SSN&Account_ID=Value

UPDATE

<part name="UNIQIDRootUpdate" element="asg:UNIQIDRootUpdateElement"/>

<xs:element name="UNIQIDRootUpdateElement" type="asg:UNIQIDRootType"/>

<xs:complexType name="UNIQIDRootType">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="UNIQIDGroup"
type="asg:UNIQIDGroupType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UNIQIDGroupType">

<xs:sequence>

<xs:element name="ID" nillable="true" type="xs:int"/>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="Surname" type="xs:string"/>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="xs:string"/>

<xs:element name="Phone" type="xs:string"/>

29Reference

REST

<xs:element name="SSN" nillable="true" type="xs:int"/>

<xs:element name="Account_ID" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s). All elements are at the same level i.e. not in a
structure so can be sequentially added to the REST request. Note that as ID (see UNIQID-
GroupPrimaryKeyType)is the primary key, the value passed in the request should exist in the
database table.

http://46.46.46.46:56421/Customers?UPDATE&ID=existingKeyValue&FirstName=Value&Sur-
name=Value&Street=Value&City=Value&State=Value&Zip&Phone=Value&SSN&Account_ID=Value

SELECT

<part name="UNIQIDGroupSelectKey" element="asg:UNIQIDGroupSelectElement "/>

<xs:element name="UNIQIDGroupSelectElement" type="asg:UNIQIDGroupSelectType"/>

<xs:complexType name="UNIQIDGroupSelectType">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="1" name="condition">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="ID">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="Condition" type="asg:conditionType"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Reference30

REST

<xs:element maxOccurs="unbounded" minOccurs="0" name="Account_ID">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="Condition" type="asg:conditionType"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

At this point we know our input parameter(s).

N.B.

Both select and selectCount have input the elements of which are contained in a structure. The
parent element is condition which will contain elements which are primary and secondary keys
(in the underlying database). The SOAP equivalent message portion would be:

<!--1 or more repetitions:-->

<condition>

<!--Zero or more repetitions:-->

<ID Condition="?"></ID>

<!--Zero or more repetitions:-->

<Account_ID Condition="?"></Account_ID>

</condition>

31Reference

REST

(As per the WSDL the Condition type can be EQ, NE, LT, LE, GT, GE, STARTS, CONTAINS and
ENDS).

<condition>

<ID Condition="GT">4</ID>

<ID Condition="LE">10</ID>

</condition>

<condition>

<Account_ID Condition="EQ">23</Account_ID>

</condition>

The above element will select records where the ID is greater than 4 AND less than or equal to 10
OR where Account_ID is equal to 23.

There are 2 condition elements so use array notation for those (one being the base).

Use numeric notation for the condition type i.e. for GT use >

e.g.

http://46.46.46.46:56421/Customers?SELECTCOUNT&condition[1].ID>4&condition[1].ID<=10&con-
dition[2].Account_ID=23

Program WSDLs

A Portus WSDL which is program based supports an INVOKE request.

Simple Example

Excerpt from typical programWSDL:

<xs:element name="invokeInputElement">

<xs:complexType>

<xs:sequence>

<xs:element name="SOABSP_CALCULATRoot">

<xs:complexType>

<xs:sequence>

Reference32

REST

<xs:element name="SOABSP_CALCULATGroup">

<xs:complexType>

<xs:sequence>

<xs:element name="OPERATION" type="xs:string"/>

<xs:element name="OPERAND_1" nillable="true" type="xs:int"/>

<xs:element name="OPERAND_2" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

■ In the definitions element there will be a value for the targetNamespace uri:

<definitions targetNamespace="uri://www.versatec.info:56421/SOABSP_CALCULAT" …

The uri gives us the starting portion of a REST request:

http://www.versatec.info:56421/SOABSP_CALCULAT

Note also that in PortusWSDLs a unique identifier (UNIQID) is prepended to various elements
and also contained in the uri e.g. in this case SOABSP_CALCULAT:

<xs:element name="SOABSP_CALCULATRoot">
■ Therewill be an elementwith a name of invokeInputElement. This is reflected in the F=INVOKE
portion of the REST request.

http://www.versatec.info:56421/SOABSP_CALCULAT?F=INVOKE
■ invokeInputElement will contain an element with a name UNIQIDRoot
■ UNIQIDRoot will contain an element with a name UNIQIDGroup

33Reference

REST

■ UNIQIDGroupwill contain the elements that are passed in the INVOKE for a REST request e.g.

<xs:element name="OPERATION" type="xs:string"/>

<xs:element name="OPERAND_1" nillable="true" type="xs:int"/>

<xs:element name="OPERAND_2" nillable="true" type="xs:int"/>

http://www.versatec.info:56421/SOABSP_CALCULAT?F=INVOKE&OPERATION=mul&OPER-
AND_1=2345&OPERAND_2=6789

Complex Example

Excerpt from more complex programWSDL:

<xs:element name="invokeInputElement">

<xs:complexType>

<xs:sequence>

<xs:element name="QEESPN01Root">

<xs:complexType>

<xs:sequence>

<xs:element name="QEESPN01Group">

<xs:complexType>

<xs:sequence>

<xs:element name="QEESPS01">

<xs:complexType>

<xs:sequence>

<xs:element name="REDEFINE_001_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="TIPO_IPF" type="xs:string"/>

<xs:element name="REDEFINE_002_NUM_IPF">

<xs:complexType>

Reference34

REST

<xs:sequence>

<xs:element maxOccurs="10" name="NUMN_IPF" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_DESDE" nillable="true" type="xs:decimal"/>

<xs:element name="REDEFINE_003_COD_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="ALFA2" type="xs:string"/>

<xs:element name="ALFA8" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_NAC" type="xs:string"/>

<xs:element maxOccurs="10" name="DUP_F10" nillable="true" type="xs:decimal"/>

<xs:element maxOccurs="100" name="D_SALIDA">

<xs:complexType>

<xs:sequence>

<xs:element name="MOMMAP" type="xs:string"/>

<xs:element name="SALIDA_DATA" type="xs:string"/>

</xs:sequence>

</xs:complexType>

35Reference

REST

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

■ In the definitions element there will be a value for the targetNamespace uri:

<definitions targetNamespace="uri://meath-nua:56008/QEESPN01" name="QEESPN01RootCol-
lection">…

The uri gives us the starting portion of a REST request:

http//meath-nua:56008/QEESPN01

In Portus WSDLs a unique identifier (UNIQID) is prepended to various elements and also con-
tained in the uri e.g. in this case QEESPN01

■ Therewill be an elementwith a name of invokeInputElement. This is reflected in the F=INVOKE
portion of the REST request.

http//meath-nua:56008/QEESPN01?F=INVOKE
■ invokeInputElement will contain an element with a name UNIQIDRoot
■ UNIQIDRoot will contain an element with a name UNIQIDGroup
■ UNIQIDGroupwill contain the elements that are passed in the INVOKE for a REST request e.g.

<xs:element name="QEESPS01">

<xs:complexType>

Reference36

REST

<xs:sequence>

<xs:element name="REDEFINE_001_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="TIPO_IPF" type="xs:string"/>

<xs:element name="REDEFINE_002_NUM_IPF">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="10" name="NUMN_IPF" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_DESDE" nillable="true" type="xs:decimal"/>

<xs:element name="REDEFINE_003_COD_IPF">

<xs:complexType>

<xs:sequence>

<xs:element name="ALFA2" type="xs:string"/>

<xs:element name="ALFA8" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="FECHA_NAC" type="xs:string"/>

<xs:element maxOccurs="10" name="DUP_F10" nillable="true" type="xs:decimal"/>

37Reference

REST

<xs:element maxOccurs="100" name="D_SALIDA">

<xs:complexType>

<xs:sequence>

<xs:element name="MOMMAP" type="xs:string"/>

<xs:element name="SALIDA_DATA" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
■ If the element nameswithinUNIQIDGroup are in a structure then the REST requestmust reflect
that:

QEESPN01?INVOKE&QEESPS01.REDEFINE_001_IPF.TIPO_IPF=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[0]=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[1]=0&QEESPS01.RE-
DEFINE_001_IPF.RE-
DEFINE_002_NUM_IPF.NUMN_IPF[2]=0&QEESPS01.FECHA_DESDE=0&QEESPS01.RE-
DEFINE_003_COD_IPF.ALFA2=0&QEESPS01.RE-
DEFINE_003_COD_IPF.ALFA8=0&QEESPS01.FECHA_NAC=0&QEESPS01.DUP_F10[0]=0&QEESPS01.D_SALIDA[0].MOMMAP=0&QEESPS01.D_SALIDA[0].SALIDA_DATA=0&QEESPS01.D_SALIDA[1].MOMMAP=22&QEESPS01.D_SALIDA[1].SALIDA_DATA=55

1. QEESPS01 is the top level element name. It has a child REDEFINE_001_IPFwhich in turn has
a child element TIPO_IPF so the parameter should be specified as:

&QEESPS01.REDEFINE_001_IPF.TIPO_IPF=0

2. If an element can occur more than once (maxOccurs > 1) then use array notation:

&QEESPS01.REDEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[0]=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[1]=0&QEESPS01.RE-
DEFINE_001_IPF.REDEFINE_002_NUM_IPF.NUMN_IPF[2]=0

&QEESPS01.D_SALIDA[0].MOMMAP=0&QEESPS01.D_SALIDA[0].SALIDA_DATA=0&QEESPS01.D_SALIDA[1].MOMMAP=22&QEESPS01.D_SALIDA[1].SALIDA_DATA=55

Reference38

REST

XSL Transformation

REST requests also support XSL transformation. The XSL file should be defined in the Control
Centre, and have the same name as the XRD and XSD file. When a REST request is made, the URL
for the XSL is added into the returned XML response, thus allowing the client to retrieve the XSL,
and apply the transformation.

For clients that do not support client-sideXSL transformation, such as someAndroid andBlackberry
devices, it is possible to apply the transformation on the server side (e.g. Portus will apply the
transformation, and return the transformed data). This is determined by the HTTP User-Agent
header, and should normally be done transparently. It is possible to force client or server trans-
formation with an option on the REST URL.

http://host:port/myService?LIST&__xslTransform=server&ID=1*

http://host:port/myService?LIST&__xslTransform=client&ID=1*

Using different encodings

See here for more information about the __encoding option on REST request.

39Reference

REST

40

4 Frequently Asked Questions

■ How do I active the Software AG sagenv file post Portus Installation? .. 42
■ How do I modify the machine identifier in the JESMSGLG? .. 42

41

How do I active the Software AG sagenv file post Portus Installation?

This issue only applies to Portus running on Linux, AIX or Solaris. If your license does not have
any Adabas or Natural drivers enabled, this issue does not apply.

If the sagenv file is not available during the Portus install, Adabas or Natural drivers may not
work correctly until this file is made available. For example, you have installed Portus before in-
stalling Adabas.

Follow these steps to enable a new sagenv file in an existing Portus installation.

1. Edit the [INSTALL_HOME]/xmiddleEnv.sh

2. Append the following to the end of this file (assuming sagenv file is /opt/softwareAg/sagenv.new)
:

if test -e "/opt/softwareAg/sagenv.new"; then

source /opt/softwareAg/sagenv.new &> /dev/null

fi

3. Save and close this file.

4. Stop and then Start the Portus server. See here for more information.

5. Modify the [INSTALL_HOME]/apache2/conf/adabas_soa_gw.conf and change the User directive
to use the sag user.

6. Change the file permissions of Portus files and directories

chown -R sag [INSTALL_HOME]

7. Review the error_log for errors/warnings.

8. Adabas or Natural drivers should now be added successfully. See here for more info.

How do I modify the machine identifier in the JESMSGLG?

During the FTP of Portus to z/OS, the machine identifier will be set to the hostnam or IP address
of the FTP server. This text will be displayed onmessages appearing in the JESMSGLG. To change
this,modify the SYSPARMmember of theCONFdataset and set this as required. It is recommended
that this is set to the hostname or IP address of the z/OS machine.

Reference42

Frequently Asked Questions

5 Performance Hints

This section outlines some suggestions to improve the performance of Portus.

■ Remove XSD

This only applies for web services which use the invoke operation, e.g services built from the
Natural, Cobol or DLL drivers.

Portus will validate the incoming XML against an XSD. This ensures that the contents and
structure of the payload are correct, and will catch potential errors early on in processing. But
XML validation is a relatively expensive operation, so it is possible to turn this off if required.

You may want to back up your existing XSD files before deletion. Use the "Import Service
Definition" and ensure the XSD box is checked. See here for more information.

To delete the XSD, use the "Delete Service Definition", and ensure the XSD box is checked. The
XSD has now been deleted from the server and validation of the payload will not take place.

■ Turning off Access Logging

Each time Portus handles a request, it writes some logging information to the access log via
Apache. By default, this file is access_log / access.log / DD:ACCESS based on the platform, *nix,
Windows, z/OS respectively.

To restrict this logging, see the following Apache directive here

To remove this logging, remove the CustomLog directive from your httpd.conf / HTCONF. This
can be accomplished by adding a # in front of the directive.

■ Use PFS caching

This only applies on z/OS or z/VSE.

Edit your SYSPARMand ensure caching of the Portus filesystemhas been turned on. The option
is CACHESIZE=N option on the CDI_DRIVER directive

43

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html#customlog

E.g
CDI_DRIVER=('pfs,PAANPFS,CONTAINER=CIO://DD:PFS,CHARSET=ASCII,LRECL=4096,CACHESIZE=4096')

■ Enable/disable Streaming

By default, when a user issues a list request, with key data of "*", i.e. listing all records in the
database, Portus will send back records in a "streamed" fashion. For example, as soon as one
record is retrieved, it is immediately sent back to the client using the HTTP chunking protocol.
It has been found that this is themost effective way of handling large amounts of data, but there
is a small performance offset in doing this. There are a number of directives that affect how
streaming is applied. These directives must be part of the Apache configuration file.

SoaGatewayStreaming On : This is the default setting. Responses will be streamed back to the client
using the HTTPChunking protocol when a list is requested that will retrieve every record in the database.
SoaGatewayStreaming Off : No streaming will ever take place. Use this option if you are concerned
about performance, and will be listing every record in the database.
SoaGatewayStreaming Force : Portus will always to attempt to stream data back to the client. This is
most effective if the SOA Gateway is running on a machine with low resources, and low memory usage
is a priority.

■ Change MPM settings

The Portus uses the Apache worker MPM to handle requests. This can be modified to increase
server threads, therefore allowing the server to serve more requests. See the Apache document-
ation for more information.

Important: Ensure that the ServerLimit of 1 is maintained at all times. Portus will not
function correctly if more than server process is started.

Reference44

Performance Hints

http://httpd.apache.org/docs/2.0/mod/worker.html

6 Internationalization

■ Setting codepages ... 46
■ Which codepage do I use? .. 46
■ SOAP versus REST differences ... 46
■ Troubleshooting .. 47

45

Portus uses IBM's International Components for Unicode to support internationization (i18n).
This supports text data conversion between almost any codepage.

Setting codepages

The Single Byte Character Set (SBCS) or Multi Byte Character Set (MBCS) codepage can be set on
the driver, for more information, see here. The codepages can also be set on the on the web service
itself, by simply left-clicking the web service and entering the codepage in the appropriate section
of the web service Properties.

Important: The codepage set on the web service overrides the one set on the driver.

Which codepage do I use?

This depends on what sort of information your service is going to return. Generally the ASCII
codepage is sufficient for the English language. The ISO-8859-1 (often called latin1) codepage
should suffice for most languages of Western Europe. The windows-1251 codepage supports
Cyrillic languages such as Russian andBulgarian. The ISO-8859-8 codepage can be used forHebrew
script.

The ICU home page has provided a useful web pagewhich displays the ICU internal name, and
a list of the aliases that Portus will recognise. This page will also display the codepagemap, which
will allow you to choose the codepage best suited to your service.

SOAP versus REST differences

Generally when using WSDL and SOAP, once the correct codepage has been set, the payload
should be recognised or returned correctly.

When using REST requests, things are slightly different. Non-ASCII characters entered on a URL
bar of a browser will be escaped into their native hex value, of the form %XX. This native hex
value differs depending on what codepage the browser recognises the character as. For example,
a browser running in the latin1 codepage will recognise Á as %C1, but a browser running in the
Cyrillic codepage will recognise Б as %C1.

For this reason Portus allows users to provide an extra field on the REST request. This field is
called __encoding. Thus users can indicate what codepage their browser is running in.

Important: By default, Portus assumes the escaped values are in the ISO-8859-1. The
__encoding field is not required in this case.

Reference46

Internationalization

http://site.icu-project.org/home
http://demo.icu-project.org/icu-bin/convexp

Example 1

The browser escapes the Russian Б into %C1. You need to tell Portus that this is the Cyrillic encod-
ing.

The URL should be http://host:port/Service?LIST&key=%C1&__encoding=windows-1251.

Example 2

The browser escapes the Hebrew Shin (�) into %F9. You need to tell Portus that this is the Hebrew
encoding

The URL should be http://host:port/Service?LIST&key=%F9&__encoding=iso-8859-8.

Troubleshooting

When Portus cannot display a character in the requested codepage, it writes amessage to the error
log, and continues to attempt to process the rest of the payload. If you find your responses are
missing some characters, check the error_log / error.log / XMIDCARDon *nix,Windows and z/OS
respectively.

The error message to check should be something like this :

Unicode char 0xF1 is not representable in encoding ASCII.

47Reference

Internationalization

48

7 Creating a Stylesheet for your Portus Data

■ Create HTML page from City XML .. 50

49

XSL stands for EXtensible Stylesheet Language, and is a style sheet language for XML documents.
XSLT stands for XSL Transformations.

XSLT can be applied to the response payload of Portus REST requests.

It is commonly used, but not restricted, to creating HTML pages based on the REST response.

When configured to use XSLT, a Portus servicewill (by default) return anXML stylesheet processing
instruction embedded in the XML. Therefore, the client consuming this data should be able to
load the XSL link, and apply the XSLT to the payload. In some cases, the client may not have the
ability to understandXMLprocessing instructions (browsers onmobile devices are a good example).
In this case, Portus has the ability to apply the XSLT on the server side, and send the transformed
results. In this case, providing the __xslTransform=server option on the REST request will tell
Portus to apply the XSLT before sending the payload, and no XML stylesheet instruction will be
included.

E.g http://host/Service?LIST&ID=*&__xslTransform=server

Create HTML page from City XML

■ This tutorial will outline how to apply XSLT to a MySQL service. Without any transformation,
the service will return raw XML, and we will apply an XSLT to display this in a HTML table.
For the purpose of this tutorial we will be using the MySQLWorld database table, city. See here
for the steps required to set this up. Please ensure that you select the city table when you get to
the Discovery step.

When this step is completed you should have a Service similar to that shown below e.g. a Service
capable of accessing the city table.

Reference50

Creating a Stylesheet for your Portus Data

■ A generic stylesheet is provided which can be modified to support your Service. Save the fol-
lowing XSL file to disk.

Important: The name of the saved stylesheet has to be in the format 'ServiceName_ver-
sion.xsl'. e.g. we will save our file as city_v1.xsl

■ If you do not already have a project created see here on how to do so. In our casewe have created
a project namedDemo. If this is not visible openWindow -> ShowView ->Navigator You should
have a view similar to this:

51Reference

Creating a Stylesheet for your Portus Data

■ Right-click your project in the Navigator View and select Import
■ ExpandGeneral and select File System. ClickNext
■ Click Browse and select the directory where you saved the above XSL. Check the XSL, and click
Finish e.g.

Reference52

Creating a Stylesheet for your Portus Data

■ Double-click your XSL file to open it for editing in a default editor or right-click on the file and
select Open With... to choose your own editor.

■ Right-click on your Service in the Servers View and select Edit DataView.
■ You should now have a view similar to this:

53Reference

Creating a Stylesheet for your Portus Data

■ The DataView provides us with 3 important items which are required when we come to edit
the stylesheet:

1. The ROOT name: e.g. cityRoot.

2. The GROUP name e.g. cityGroup.

3. The element names e.g. ID, Name, CountryCode, District and Population.
■ Select the XSL tab to edit its contents.

1. Find the entry <xsl:template match="changeThisRoot"> and modify changeThisRoot to your
root name.

2. Find the entry <xsl:template match="changeThisGroup"> and modify changeThisGroup to
your group name.

3. Find the entry ColumnHeader1. It should be wrapped in TR tags as follows:

<TR>

Reference54

Creating a Stylesheet for your Portus Data

<Td>ColumnHeader1</Td>

</TR>

Create as many Td tags entries within the TR tag as there are elements in your DataView e.g.
in this case 5.

Change each ColumnHeader1 value to the element names. For headers these do not have to
match the element names but for simplicity we will do so here e.g.

<TR>

<Td>ID</Td>

<Td>Name</Td>

<Td>CountryCode</Td>

<Td>District</Td>

<Td>Population</Td>

</TR>

4. Find the entry XRDElementName1. It should be wrapped in tr tags as follows:

<tr>

<td><xsl:value-of select="XRDElementName1" /></td>

</tr>

Create as many td tags entries within the tr tag as there are elements in your DataView e.g.
in this case 5.

Change each XRDElementName1 value to the element names.

Important: These must match the element names exactly e.g.

<tr>

<td><xsl:value-of select="ID" /></td>

<td><xsl:value-of select="Name" /></td>

<td><xsl:value-of select="CountryCode" /></td>

<td><xsl:value-of select="District" /></td>

<td><xsl:value-of select="Population" /></td>

55Reference

Creating a Stylesheet for your Portus Data

</tr>

5. Save the XSL (Ctrl+S).

6. In theNavigator View left-click the XSL file and, holding down the left button, drag and drop
the file onto the Service as shown:.

7. You should see a message similar to this in the Portus Action Log:.

8. Select the Service in the Servers View. If the Properties View is not open select Window ->
Show View -> Properties.

Select the 'WSDLURL is ...' entry in the Properties Viewwhich should open a browserwindow.

In the browser window change ?WSDL to ?LIST&CountryCode=BO* e.g. http://local-
host:56005/city?LIST&CountryCode=BO* and hit enter.

The results should be displayed as follows:

Reference56

Creating a Stylesheet for your Portus Data

9. Congratulations! You have now created a stylesheet for your Service.

57Reference

Creating a Stylesheet for your Portus Data

58

8 Language Structure Support

■ The Portus Representation of Data ... 60
■ ‘Tuple’ Based Databases .. 60
■ Record Based Databases ... 61
■ Calling Application Programs ... 61
■ Representing Individual Fields ... 62
■ Representing Structures ... 63
■ Representing Arrays .. 65
■ Representing Redefines ... 67
■ Summary ... 70

59

Portus currently supports the calling of C functions, COBOL subroutines andNatural subprograms.
In the future, it will also support PL1 and potentially assembler in a similar way. All of these lan-
guages have the following concepts

■ Simple or base types to represent data
■ Structures, which are chunks of memory split up into individual fields with simple/base types
■ Arrays which are two or more instances of a structure or simple type.
■ A field area in the language which is mapped over by a language structure. In COBOL or Nat-
ural terms, this is called a redefinition of the fieldwhile in C it is represented by a union or could
potentially be done with pointer arithmetic.

This section of the documentation will describe how such constructs are treated by Portus.

The Portus Representation of Data

Portus externally knows everything as a single node within an XML document. XML documents
can contain structures of XMLnodes, arrays of XMLnodes or arrays of structures so it can represent
any data structure that is required. Different languages and databases have different ways of
representing data and it is necessary within Portus to enable the mapping of these external fields
into the type of structures that are required internally by the various drivers supported by Portus.
In particular, if the Portus representation of the data is modified in away that is incompatible with
how an application program expects to be called, at best, incorrect results will be returned but
more than likely the stability of Portus itself will be impacted due to program abends.

‘Tuple’ Based Databases

A ‘tuple’ based database is simply a database technology for which the data is presented in
name/value pairs or ‘tuples’. ADABAS is a tuple based database as when requests are being
provided to ADABAS, or data is being returned by ADABAS, it is returned as a field name/Value
pair which can easily be translated from and to the external XML structures.

Relational databases such as DB2 also work on the principle of a tuple. The data is provided using
column names along with the data associated with the column. Again, this is easily mapped to
the external XML field structure and does not need further explanation.

Reference60

Language Structure Support

Record Based Databases

Databases such as VSAM and IMS/DB present their data in the form of records. A record is simply
a single contiguous piece of storage that contains the data related to the request. While it is held
contiguously internally in the database, it will almost always be made up of multiple individual
fields. The individual fields within the record are then addressed by offset, length and type.While
they could be addressed in thismost simpleway,most if not all organizationswill have a language
definition of the individual fields in the formof a structure.When referencing fields in the structure,
the language implementation can then calculate the offset and length of each field referenced and
then process it base on its type. Portus uses these language definitions to create definitions for
record based databases.

Calling Application Programs

When calling an application program, generally there will be one or more parameters to the pro-
gram.Note thatwhile the applicationmay treat these as input or output parameters, the application
must receive all of the parameters during the call.

To be clear on this point, Portus has the concept of input parameters, output parameters, input-
output parameters and parameters which are neither input nor output in its input and output
messages for a service. This relates purely to the input/output messages that Portus will build for
the service definition. The parameters _Must_ be passed in their entirety to the application being
called regardless of their direction definition to Portus.

Depending on the programming language, parameters can be provided as:

1. A list of individual fields (the most common way for C)

2. A single structure containing all of the input/output information (mostly used in CICS)

3. A list of fields or structures (used by COBOL and Natural most commonly)

Essentially it can be stated that an application programwill be calledwith one ormore parameters
and each parameter may be a single field, a structure or an array. Within a structure we could
have other structures or arrays while it is also possible to have arrays of structures.

While all this sounds quite complicated and involved,when it’s brokendown it is not as complicated
as it may seem. Portus has the concept of a level 1 field name which may itself be a field or the
name of a structure. There may be multiple levels below this level 1 field but the number level 1
fields will dictate how many parameters are passed to the applications.

61Reference

Language Structure Support

Representing Individual Fields

The following are equivalent parameter definitions in various languages:

NATURAL

PARAMETER
1 OPERATION (A3)
1 OPERAND_1 (I4)
1 OPERAND_2 (I4)
1 RESULT (I4) BY VALUE RESULT

END-DEFINE

COBOL

linkage section.
01 Operation PIC X(3).
01 Operand1 PIC S9(9) COMP-4.
01 Operand2 PIC S9(9) COMP-4.
01 Result PIC S9(9) COMP-4.
procedure division USING Operation Operand1 Operand2 Result.

C

int calc(char operation[3], int *operand1, int *operand2, int *result)

Each of the above represents in their respective languages:

■ A 3 character field that will contain an operation code.
■ A 4 byte binary field that will contain the first operand for the calculation
■ A 4 byte binary field that will contain the second operand for the calculation
■ A 4 byte binary field that will contain the result of the calculation

The screenshot below illustrates the Portus representation created based on theNatural PDA area,
however, this could also be used for any of the other languages:

Reference62

Language Structure Support

Some points to note about this.

■ - The external names have no significance in terms of the internal call to the application code.
■ - Youwill note thatOPERATION,OPERAND_1 andOPERAND_2 are input/output fieldswhile
FUNCTION_RESULT is output only. Again, this will have no significance internally as all fields
must be passed to the application program as it expects this.

■ - If you do not wish a field to be included in the input or output messages, it must be set with
a direction of ‘none’. It must not be deleted as if it is deleted, Portus will end up passing an in-
correct set of parameters to the program being called.

The principle of not deleting anything in the Portus representations of this data is critical for the
consistent and stable running of the SOA Gateway. This is because Portus representation must
reflect what an application program expects to receive as parameters. Any removal or changing
of the order here will cause problems because it will result in a different representation being
provided to the application program.

Representing Structures

In most cases, far more data must be passed to or returned from an application than will fit in a
single field. For this reason, structures are generally used to pass data backwards and forwards
between applications.

The following showhow individual fields alongwith a simple structure are represented in various
languages:

63Reference

Language Structure Support

NATURAL

PARAMETER
1 INITIAL (P7)
1 I_RATE (P2.2)
1 YEARS (I2)
1 RESULT
2 YEAR (I2) BY VALUE RESULT
2 SIMPLE (A17) BY VALUE RESULT
2 COMPOUND (A17) BY VALUE RESULT

END-DEFINE

COBOL

LINKAGE SECTION.
01 INITIAL-AMOUNT PIC S9(7) COMP-3.
01 I-RATE PIC S99V99 COMP-3.
01 YEARS PIC S9(4) COMP.
01 RESULT.

02 RESULT-TABLE.
03 YEAR PIC S9(5) COMP .
03 SIMPLE PIC ZZ,ZZZ,ZZZ,ZZ9.99 DISPLAY .
03 COMPOUND PIC ZZ,ZZZ,ZZZ,ZZ9.99 DISPLAY .

*
PROCEDURE DIVISION USING INITIAL-AMOUNT I-RATE YEARS RESULT .

C

typedef struct {
short year;
char simple[17];
char compound[17];
} result_h ;

int interest (int *INITIAL, int *I_RATE, int *YEARS, struct result_h *result)

The equivalent representation of this parameter list in Portus is as follows:

Reference64

Language Structure Support

It will be noted that the INITIAL, I_RATE, YEARS and RESULT fields are at level 1 while the ele-
ments of the RESULT structure YEAR, SIMPLE and COMPOUND are at level 2. This will result
in 4 parameters being passed to the application code with the 4th parameter being a structure.
The following should be noted:

■ As with the previous example, if any of the fields in the structure are removed, it renders the
structure invalid unless the application program is changed too. If an element or elements of a
structure are not to appear in the output or input messages, they should be given a direction of
‘none’ so that they are still in the structure passed to the application but will not be seen in the
service definition.

■ The format of the fields also cannot be changed as this could impact on their length and thus
pass what is not expected to the application program.

Representing Arrays

Arrays are a very common way of providing a lot of the same information or returning lists from
application programs. The following example builds on the previous example to return an array
of 50 structures. To return simply an array of values, the ‘structure’ would simply contain one
element.

65Reference

Language Structure Support

NATURAL

PARAMETER
1 INITIAL (P7)
1 I_RATE (P2.2)
1 YEARS (I2)
1 RESULT (1:50)
2 YEAR (I2) BY VALUE RESULT
2 SIMPLE (A17) BY VALUE RESULT
2 COMPOUND (A17) BY VALUE RESULT

END-DEFINE

COBOL

LINKAGE SECTION.
01 INITIAL-AMOUNT PIC S9(7) COMP-3.
01 I-RATE PIC S99V99 COMP-3.
01 YEARS PIC S9(4) COMP.
01 RESULT.

02 RESULT-TABLE OCCURS 50.
03 YEAR PIC S9(5) COMP .
03 SIMPLE PIC ZZ,ZZZ,ZZZ,ZZ9.99 DISPLAY .
03 COMPOUND PIC ZZ,ZZZ,ZZZ,ZZ9.99 DISPLAY .

*
PROCEDURE DIVISION USING INITIAL-AMOUNT I-RATE YEARS RESULT .

C

typedef struct {
short year;
char simple[17];
char compound[17];
} result_h ;

int interest (int *INITIAL, int *I_RATE, int *YEARS, struct result_h *result[50])

The above is represented in Portus in the following way:

Reference66

Language Structure Support

Again, the application program is expecting a 4th parameter with 50 instances of the following
array above. Removing a field from the structure or changing the number of array occurrences
without changing the application will result in invalid results and potentially will destabilise the
system. Once again if the field should not appear in the input or output messages for the service,
simply set the field’s direction to ‘none’ and leave the structure intact.

Representing Redefines

Redefines ultimately involve the mapping of a base field to one or more different layouts. The
base field in this case is the original field uponwhich the redefine(s) are based. Redefines are used
for a number of reasons:

■ It may be that the format of an area is different depending on some value passed as a parameter
or perhaps earlier in the area itself.

■ Some programmers like to define a large base area and redefine it so that fields may be added
at a later date without changing the memory profile of the application. It should be noted here
that a redefinition of a base area may have a smaller length than the base area but may never
be larger than the base area as otherwise, storage overwrites will be the results.

Ultimately it could be said that a redefine will generally involve mapping a structure on to a
flat piece of storage. The reason this is relevant to Portus is that in most cases for a service, the
input and outputmessageswill be created from the redefinition (i.e. the discrete fields), however,
Portusmust create the base field based on the structure and pass the base field to the application
program.

The following shows a simple redefine in multiple languages as before. Note in the following
examples:

67Reference

Language Structure Support

■ The base field is 200 bytes long.
■ The total of the redefined structure is 78 bytes long

NATURAL

PARAMETER
1 BASE-FIELD (B200)
1 REDEFINE BASE-FIELD
2 FIELD1 (A20)
2 FIELD2 (B4)
2 FIELD3 (I4)
2 FIELD4 (B50)

END-DEFINE

COBOL

LINKAGE SECTION.
01 BASE-FIELD PIC X(200).
01 FILLER REDEFINES BASE-FIELD.

02 FIELD1 PIC X(20).
02 FIELD2 PIC 9(4) BINARY.
02 FIELD3 PIC 9(8) COMPUTATIONAL.
02 FIELD4 PIC 9(50) BINARY.

C

union {

unsigned char base_field[200];

struct {
char field1[20];
unsigned char field2[4];
int field3;
unsigned char field4[50];

} redef_base;

} base;

This is represented in Portus as follows:

Reference68

Language Structure Support

Some notes about this:

■ You will notice that by default, the base field is disabled. In order for Portus to know which
version of the field to expose, one or the other must be disabled. If you wish to expose the base
field in the input/output messages, then enable the field ‘BASE_FIELD’ and the field ‘RE-
DEFINE_001_BASE_FIELD’ will be automatically disabled.

■ Note that then a structure is disabled, only the base of the structure is disabled in order to
maintain the direction settings for the fields in the event that the structure is enabled again.

■ Never remove/delete a field from a redefinition as the presence of fields illustrates to Portus
how to build the base field expected by the application. Change its direction to ‘none’ if you do
not wish to see it in an input or output message for the service.

■ The base field, even though disabled, must never be removed. This is the actual field type the
application is expecting with language constructs enabling it to process the data based on the
redefinition.

■ In essence, a redefine is similar to a structure and from an external point of viewwith input and
outputmessageswill appear the sameway, however, Portusmust know the base field to correctly
call the application program.

69Reference

Language Structure Support

Summary

When dealing with Portus views/XRDs created based on application program parameter lists or
structures, follow these simple rules:

■ Never delete fields from the generated Portus view. If you do not wish to make the fields
available as input and/or output messages, set their direction as ‘none’. You may also elect to
set a fixed value for such fields to force specific behaviour in an application.

■ Always ensure that with redefinitions, only the baseOR the redefined fields are enabled; never
both.

■ If an application program changes, Ostia recommend that you recreate the viewof the application
using Portus Control Centre wizard rather than attempting to modify an existing XRD.

Reference70

Language Structure Support

9 Data Masking

■ Example .. 72

71

Data masking is the process of obscuring (masking) specific data elements within data stores. It
ensures that sensitive data is replaced with realistic but not real data. The goal is that sensitive
customer information is not available outside of the authorized environment. Data masking is
typically donewhile provisioning non-production environments so that copies created to support
test and development processes are not exposing sensitive information and thus avoiding risks
of leaking.

Portus provides functionality which allows you to select fields whose content you do not wish to
divulge. Thismasking takes place as the data flows throughPortus, therefore ismasked "in-flight".
The data sitting on the back-end database is not changed in anyway. Almost 40 different algorithms
are provided which you can use to maintain data integrity. The algorithms include generate a
random email address, create a hash value, generate random credit card numbers, random dates
and times, and look up a list of seed values in an external database table.

This allows users to query your data secure in the knowledge that its real content remains unex-
posed.

Example

Employee Data without masking

<EMPLOYEE_ID>100</EMPLOYEE_ID>

<FIRST_NAME>Steven</FIRST_NAME>

<LAST_NAME>King</LAST_NAME>

<EMAIL>SKING@SKING.COM</EMAIL>

<HIRE_DATE>2003-06-17</HIRE_DATE>

<SALARY>24000</SALARY>

Employee Data with masking

<EMPLOYEE_ID>100</EMPLOYEE_ID>

<FIRST_NAME>UKfaUAKuPFFAuPFap</FIRST_NAME>

<LAST_NAME>PPupUpaAfUfkpuFkpFkkFfFa</LAST_NAME>

<EMAIL>VIJAY@SMITHS.COM</EMAIL>

<HIRE_DATE>2002-08-16</HIRE_DATE>

<SALARY>823999</SALARY>

Reference72

Data Masking

Algorithms used are random text for FIRST_NAME and LAST_NAME, random email for EMAIL,
random date for HIRE_DATE and random number between 0 and 999999 for SALARY.

To find out more about this feature please contact your sales area representative.

73Reference

Data Masking

74

	Reference
	Table of Contents
	Reference
	1 Portus Resource Access
	Overview
	Prerequisites
	Retrieving the WSDL for your resource.
	Portus Web Services Operations for Data Resources
	Specifying Key Data
	Key Types
	Using Wild card Symbols and other Generic Search criteria

	2 SOAP
	SOAP Headers
	Conversational Processing
	The Version Element
	The ConversationState Element
	The ConversationId Element

	Transaction Processing
	The TransactionState Element
	The Transaction Id Element

	Adabas specific headers
	Relational database specific headers

	Soap Operations for Server Configuration
	adaptorList
	configList
	configRemove
	configReplace
	configSet

	3 REST
	Introduction
	REST Overview
	Example
	Enhanced REST Operations

	Database WSDLs
	Supported Requests
	URI
	Messages

	Program WSDLs
	Simple Example
	Complex Example

	XSL Transformation
	Using different encodings

	4 Frequently Asked Questions
	How do I active the Software AG sagenv file post Portus Installation?
	How do I modify the machine identifier in the JESMSGLG?

	5 Performance Hints
	6 Internationalization
	Setting codepages
	Which codepage do I use?
	SOAP versus REST differences
	Troubleshooting

	7 Creating a Stylesheet for your Portus Data
	Create HTML page from City XML

	8 Language Structure Support
	The Portus Representation of Data
	‘Tuple’ Based Databases
	Record Based Databases
	Calling Application Programs
	Representing Individual Fields
	Representing Structures
	Representing Arrays
	Representing Redefines
	Summary

	9 Data Masking
	Example

